The large-length aerial work platform boom is susceptible to vibration in fast operations due to its slender and thin-walled structure, which threatens the safety of the operators on the work platform attached to its tip. For the vibration transmission characteristics between thin-walled boom sections and the influence mechanism of multi-actuators working on the dynamic response of the boom are not clear, existing active damping methods is not so efficient, and this phenomenon has been one main bottleneck for the aerial work platform in further increasing its working altitude. Accordingly, in this project the following studies are carried out with the dynamic modeling of the boom section, dynamic response analysis of the boom system and its active vibration damping control as the thread: Focusing on the features of deformable boom cross-sections and structurally discontinuous telescopic joints, a higher-order dynamic model of the boom section with curved cross-section is formulated and used to reveal the vibration transferring mechanisms between flexible thin-walled boom sections; Considering the feedback constraints of the control system, the coupling characteristics of rigid-flexible-control integrated boom system is discussed and employed in clarifying the dynamic response law of the boom system excited by multi-actuators; On this basis is proposed the active vibration damping control strategies with the turntable hydraulic motor, the pitching hydraulic cylinder and the articulated arm hydraulic cylinder of the boom as multi-actuators, and the corresponding control system is designed based on the theory of sliding mode variable structure control to simultaneously suppress rotary and pitching vibrations of the boom. The work of this project will contribute to the improvement in safety and stability of the manned platform, and can provide theoretical supports and technical reserves for the development of the homemade 100-meter-level aerial work platform.
大高度高空作业车臂架是超长柔性薄壁结构,执行快速作业时振动显著,威胁臂端平台作业人员的安全。由于薄壁臂节间振动传递特性及多作动器驱动对臂架响应的影响机理不明确,现有主动减振方法效果有限,成为制约高空作业车作业高度增加的主要瓶颈。为此,本项目以臂节结构建模、臂架系统响应分析及主动减振控制为主线,开展以下研究:针对臂节截面易变形及伸缩关节处不连续的特点,建立弹性约束曲线截面臂节的高阶动力学模型,揭示柔性薄壁臂节间的振动传递机理;考虑控制系统反馈约束作用,研究臂架系统刚-柔-控一体化模型的耦合特性,阐明多作动器驱动下臂架系统的动态响应规律;提出利用臂架回转马达、变幅油缸和曲臂油缸等多作动器主动减振的方法,设计同时抑制臂架变幅振动和回转振动的滑模变结构主动减振控制系统。研究成果有望提高大高度高空作业车载人平台运行的安全性和平稳性,为研制国产百米级高空作业车提供理论支撑和技术储备。
大高度高空作业车臂架是超长柔性薄壁结构,执行快速作业时振动显著,威胁臂端平台作业人员的安全。然而由于臂架薄壁结构截面受载变形、臂节间质量非连续分布、臂架构型时变及系统刚柔液控非线性耦合等因素,其动力学行为难以准确预测,限制了高空作业装备的精细化设计,更影响了臂架系统运动控制和振动抑制的效果,成为制约高空作业车高度增加的一大瓶颈。因此,本项目以箱型截面伸缩臂式高空作业车臂架系统为研究对象,以其动力学建模、运动控制和主动减振为主线,开展了以下研究:考虑臂节圆角截面特征,提出基于主成分分析的薄壁结构截面特征形变识别方法,建立了薄壁臂节改进的一维高阶动力学模型;考虑臂节伸缩段的时变重合,基于几何连续性条件构建了移动关节处的位移场传递模型;考虑液压系统位移约束边界,建立了臂架系统刚柔液控耦合的一维高阶动力学模型,分析了臂架系统动态响应规律;应用机器人学理论构建了臂架系统正、逆运动学模型,利用关节空间中的模拟CP控制完成了臂架典型直线运动的轨迹规划;建立了多作动器电液伺服系统数学模型,结合基于前馈补偿和PID反馈的复合校正策略设计了臂架运动控制系统;采用线性最优控制理论设计了状态调节器,构建了臂架主动减振的闭环反馈控制系统;搭建了高空作业车动力学性能综合实验平台,通过试验方法验证了动力学模型的准确性以及运动控制和振动抑制的有效性。研究成果有助于提高薄壁臂架结构的动力学设计能力和振动控制水平,能够为研制大高度高空作业车提供理论支撑和技术储备,对提高高空作业车载人平台运行的安全性和平稳性有积极意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
涡度相关技术及其在陆地生态系统通量研究中的应用
内点最大化与冗余点控制的小型无人机遥感图像配准
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
宽弦高速跨音风扇颤振特性研究
大跨结构减振与主动控制的基础研究
基于MR阻尼器的纵飘桥梁被动减振-半主动减震控制研究
电流变阻尼器减振机理及其在转子振动主动控制中的应用
电磁谐振式惯质阻尼器的减振机理及自供能半主动控制研究