Inverse synthetic aperture radar (ISAR) image sequences of space targets can be constructed by using long-time and wide-angle wideband radar measurements. And information extraction from ISAR image sequences is an essential technology to observe and analyze working satellites and space shuttles. Utilizing the time-spatial information within the ISAR image sequences, it is potential of providing a effective approach to implementing approaches for space target three-dimensional reconstruction, attitude measurement, payloads recognition and other essential intelligence analysis tasks. There are still some defects in signal and information processing of ISAR image sequence, including phase and geometry distortion within frames of an ISAR image sequence, and evident difficulties in feature description and information mining of ISAR sequence. For the sake of effective improvement of information extraction capability from ISAR image sequences, the program will develop the deep research on information processing of ISAR image sequence methodologies. The main content of this program includes four aspects. First, precise imaging signal methodology is focused on in terms of both high fidelity in both phase and geometric precision of an ISAR image sequence, which also paves an approach to ensure the possiblity of successful information extraction. The second aspect lies in developing the time-spatial feature descriptor for the representation of target scattering motion gemetroy information, where vision feature within and between ISAR frames are both concerned with feature learning and fusion algorithms. The third part of the program concentrates on the three-dimensional geometry structure and attitude reconstruction from ISAR sequences. In the part, the difficulties within solving the ill-posed and incomplete reconstruction inverse problem are mainly considered. The last part of this program aims at developing detection and belief analysis approaches for interesting components, like important mission payloads, identifying and extraction from ISAR image sequences. The interesting components prior knowledge including geometric and scattering characteristics is considered to apply for instituting the time-spatial feature based discrimination and parameter estimation algorithms. The project will provide strong technical support for application of ISAR technology in the space sensing and survenliance areas.
空间目标序列逆合成孔径雷达成像与信息处理是指利用款待雷达对卫星、航天飞机等人造功能目标进行大角度全圈次联合高精度成像,并从序列ISAR成像帧间提取空时特征,结合几何投影分析提取目标三维几何、姿态指向和载荷内容信息。目前空间目标序列ISAR成像信息提取存在帧间信息失真,序列特征描述和目标信息提取困难等问题,本项目将开展序列ISAR成像与信息提取研究,主要包括四个方面。首先,研究几何和聚焦精度保真的序列ISAR成像方法,实现序列成像帧间信息保真;其次,研究对序列成像帧内和帧间几何散射特性进行有效描述的空时特征表征方法,主要包括对目标视觉整体和局部特征、帧间特征流学习和表征方法;第三,研究序列ISAR成像投影方程设计和三维重构,解决方程欠定缺损的求解问题;最后,研究综合利用兴趣部件的先验知识的序列成像的部件识别和分析方法。项目的研究将为加强ISAR成像技术在空间态势感知应用提供重要方法支持。
空间目标序列逆合成孔径雷达成像与信息处理是指利用宽带雷达对卫星、航天飞机等人造功能目标进行大角度全圈次联合高精度成像,并从序列ISAR成像帧间提取空时特征,结合几何投影分析提取目标三维几何、姿态指向和载荷内容信息。目前空间目标序列ISAR成像信息提取存在帧间信息失真,序列特征描述和目标信息提取困难等问题,本项目开展序列ISAR成像与信息提取研究,主要包括四个方面。首先,研究几何和聚焦精度保真的序列ISAR成像方法,实现序列成像帧间信息保真;其次,研究对序列成像帧内和帧间几何散射特性进行有效描述的空时特征表征方法,主要包括对目标视觉整体和局部特征、帧间特征流学习和表征方法;第三,研究序列ISAR成像投影方程设计和三维重构,解决方程欠定缺损的求解问题;最后,研究了综合利用兴趣部件的先验知识的序列成像的部件识别和分析方法。项目的研究为加强ISAR成像技术在空间态势感知应用提供重要方法支持。项目研究成果包括36篇论文和12篇专利。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于改进LinkNet的寒旱区遥感图像河流识别方法
具有随机多跳时变时延的多航天器协同编队姿态一致性
扩散张量成像对多发性硬化脑深部灰质核团纵向定量研究
高分五号卫星多角度偏振相机最优化估计反演:角度依赖与后验误差分析
TVBN-ResNeXt:解决动作视频分类的端到端时空双流融合网络
空间目标多弧段干涉三维ISAR成像技术研究
贝叶斯稀疏孔径复杂运动空间目标ISAR成像技术研究
基于序列ISAR图像的空间目标三维重构
空间目标双基地ISAR成像自聚焦方法研究