In the primary permanent-magnet linear motor (PPMLM) traction system for urban rail transit, the air-gap width of the PPMLM cannot keep unchanged during the operation of the train. The variation of the air-gap width will result in unbalanced back-electromotive-forces. As a result, unbalanced load currents and circular currents will appear in the PPMLM traction system using a group control mode (car control mode or bogie control mode). Additionally, the operation energy consumption will be increased while the safety level of the traction equipment will be reduced. Obviously, the group control mode is not suitable for the PPMLM traction system. According to the current technology, the axis control mode is the inevitable choice for the PPMLM traction system. However, the axis control mode has several significant disadvantages, such as the biggest equipment space, the heaviest equipment weight, the most operation energy consumption, the highest initial purchase cost and the highest late maintenance cost. To avoid using axis control mode, a non-symmetric PPMLM traction system is proposed for urban rail transit in this project, which breaks the traditional symmetric control structure of the traction system and considers the individual features of the PPMLM traction system. Besides, the non-symmetric PPMLM traction system combines the features of car control mode and axis control mode. For the non-symmetric PPMLM traction system, there are some key scientific problems, such as operation principles, design proposals, control methods and so on. They will be investigated by deep theoretical analysis and experimental validation in this project. Also, the complete system analysis theory and the corresponding design method will be developed. The theoretical and technological foundations will be provided for future applications of the PPMLM traction system in the field of urban rail transit.
对于城市轨道交通直线电机牵引系统而言,直线电机在列车运行过程中气隙难以保持恒定。气隙变化导致反电动势不平衡,从而使得采用群控模式(车控模式或架控模式)的初级永磁直线电机牵引系统出现负载电流不平衡和环流等问题,进而增加牵引系统运行能耗和威胁牵引设备安全。鉴于不宜采用群控模式,为了避免采用设备占用空间最大、自身质量最重、运行能耗最多、初期采购成本和后期维护成本均最高的轴控模式,本项目突破现有牵引系统对称结构的思维定式,在综合考虑初级永磁直线电机牵引系统固有特性的基础上,创新性地提出融合车控模式与轴控模式特点的非对称初级永磁直线电机牵引系统。本项目拟对城市轨道交通非对称初级永磁直线电机牵引系统的运行机理、设计方案和控制方法等基本科学问题进行深入的理论分析和实验研究,建立较为完整的系统分析理论与设计方法,为未来永磁直线电机牵引系统在城市轨道交通领域的成功应用奠定坚实的理论基础和技术基础。
本项目对城市轨道交通非对称初级永磁直线电机牵引系统的运行机理、设计方案和控制方法等基本科学问题进行了深入的理论分析和实验研究。首先,分别基于直接推力控制和电流滞环控制对非对称初级永磁直线电机牵引系统的运行机理进行了深入研究,实现了系统的基本运行。其次,基于极小化最大相铜耗思想提出了跨电机容错控制方法,实现了非对称初级永磁直线电机牵引系统缺相故障下输出能力的最大化。在此基础上,基于多电机主动补偿,提出了跨电机的效率优化控制方法,提高了牵引系统的运行效率。针对永磁电机牵引系统需要大量电流传感器的现状,分别提出了单个相电流传感器和单个直流母线电流传感器的容错控制方法,提高了非对称初级永磁直线电机牵引系统的可靠性。针对非对称初级永磁直线电机牵引系统运行过程中变气隙的特点,提出了一种基于模型参考自适应的初级永磁直线电机在线参数辨识方法。最后,本项目制作了包含三个动子的非对称初级永磁直线电机牵引系统,并建立了相应的实验平台,对所提控制算法进行了实验验证。实验结果验证了所提分析理论和控制方法的有效性。总体而言,本项目建立了较为完整的非对称初级永磁直线电机牵引系统分析理论与设计方法,为未来永磁直线电机牵引系统在城市轨道交通领域的成功应用奠定坚实的理论基础和技术基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
低轨卫星通信信道分配策略
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
气载放射性碘采样测量方法研究进展
增强型磁场调制初级永磁直线电机及其高性能控制
次级断续与初级横向偏移时直线感应牵引电机的电磁特性与防冲击控制
城市轨道交通用初级永磁型直线电机及其控制系统研究
永磁直线电机整体建模与性能控制研究