S phase, formed on the surface of austenitic stainless steel by low temperature carburizing or nitriding treatment, has excellent mechanical properties such as ultrahigh hardness, brilliant wear and fatigue resistance and good corrosion resistance as well. Therefore it has wide potential in the field of medicine, biology and energy,et.al...It is known that S phase is a metastable phase, composed of supersaturated interstitial atoms in the austenitic substrate. (The concentration of carbon can reach 12at.% for carburizing while that of the nitrogen can approach 25at.%.).Up till now, it is not clear about the formation mechanism of S phase and its stability under service conditions. ..The aim of this project is to characterize the microstructure of S phase by electron microscopy, analyze the distribution of alloying elements by 3DAP, obtain the interaction energy between the substitutional and interstial atoms by internal friction and DMA methods, to study the formation mechanism of nano cluster during the formation of S phase on the austenitic stainless steel, finally to reveal the formation mechanism of S phase and the mutual impacts. Based on this understanding, it is also necessary to investigate the phase transitions and evolution of properties of S phase under applied multi-physical field (stress and/or heat fields), and obtain its stability conditions and rule of phase transitions under multi physical field...Therefore, to study the mechanism of S phase formation and its stability under applied fields can reveal the formation mechanism of supersaturated solid solution of metastable phase in austenite; on the other hand, it is also beneficial for the development of process optimization and broadening of practical applications in all fields.
通过低温渗碳或渗氮技术在奥氏体不锈钢表面得到的S相,具有优异的综合性能(超高硬度、抗磨损、耐疲劳和耐腐蚀性),在医学,生物,能源等领域有广泛的应用前景。S相是间隙原子在奥氏体基体中的过饱和固溶亚稳相(含碳12at.%,含氮25at.%),对S相形成机制及其在使用和服役条件下的稳定性尚不清楚。本项目用电镜分析技术表征S相的微观结构,三维原子探针分析合金元素分布,利用内耗及力学谱分析获得置换与间隙原子交互作用能等物理参数,研究渗碳奥氏体不锈钢形成S相的纳米团簇形成机制,揭示S相的形成规律及其影响因素;在此基础上,研究S相在外加应力场或(和)温度场等多物理场作用下的结构演变和性能变化,探索在多物理场下S相的稳定条件和组织转变规律。本项目对S相形成机制及其在外场作用下稳定性的研究,不仅可望揭示奥氏体过饱和亚稳固溶体S相的形成机制,而且有利于进一步优化工艺、推广S相在各领域中的应用。
奥氏体不锈钢表面处理得到的S相具有优异的综合性能,然而其形成机制及其在使用和服役条件下的稳定性缺乏研究。.首先按原定研究方案,利用三维原子探针和内耗技术研究奥氏体不锈钢形成S 相的纳米团簇形成机制。证明了S相中过饱和碳是种偏聚并没有析出,偏聚过程是可逆的(碳浓度从高到低),而且碳的偏聚和其它合金元素没有直接的关系。在奥氏体中的碳扩散系数随碳含量增加而增大的原因除了考虑合金元素对碳的扩散系数影响及扩散导致的弹性应力场的作用以外,主要原因是面缺陷(孪晶与层错)成为碳原子的快速扩散通道。纳米团簇机制的揭示有助于增加对S相形成机制的理解。.其次,研究S 相在外加应力场(等静压和拉应力)和温度场等多物理场作用下的S 相稳定规律。证明了等静压作用下碳扩散受到抑制,通过不同温度下扩散系数的关系计算其扩散激活能,结果表明受等静压作用的碳的扩散激活能大于无压力情况,且扩散激活能在碳含量较高时由于面缺陷(孪晶与层错)与碳原子的相互依存作用突然降低。在拉应力作用下S相的厚度随着拉应力的增加而增加,拉应力可以促进碳原子在S相中的扩散,同时能够形成许多纳米尺度的孪晶,从而增加表层的硬度。.第三,研究了S相在高载荷下磨损性能。奥氏体不锈钢基体在压应力与滑动切应力作用下发生了剧烈的塑性变形,甚至会发生马氏体相变;而在大载荷磨损后S相没有发生明显的塑性变形和马氏体相变,具有很好的机械与相稳定性。.最后,运用电化学充氢、慢速率拉伸与EBSD、气相氢渗透等实验系统研究了S相的氢脆行为。S相能够提高抗氢脆能力且渗碳S相的抗氢脆效果比渗氮S相更好。分析其原因是稳定的S相能抑制亚稳奥氏体不锈钢表面氢致马氏体相变,减小裂纹形核的可能性,并有效降低氢的渗透。.项目对于S相形成机制的研究达到预定目标,研究外加应力场与温度场作用下的稳定性的结果以及在特殊环境下的服役性能(重载磨损、氢脆)的探索具有理论创新和实用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
巨噬细胞通过外泌体/XRN1通路降解胰腺导管上皮细胞BRCA1/2 mRNA引发基因组不稳定的机制
不锈钢表面“膨胀”α相层形成与强韧化机理
双相不锈钢凝固组织形成机制及演变规律研究
强外磁场下QCD物质相结构及临界行为特征研究
奥氏体不锈钢凝固组织中铁素体形成机制及演化规律研究