Power/Energy supply is crucial to the application of implanted medical devices. Depleted battery in medical devices usually needs to be replaced, which is not only high cost also high risk of second surgery. The development of the triboelectric nanogenerators (TENGs) provides a new approach to solve this problem. However, current TENGs applied in clinic is limited due to non-biocompatibility. To solve this problem, this work will utilize medical 317L stainless steel (317L SS) and the compound of Nylon 66 and Etylcellulose as friction materials to prepare a biocompatible TENG. Designing the nano- and micro- arrays of the 317L SS and compound, the power output property and mechanism of TENG will be investigated. Controlling the composition and the interfacial molecular groups of the compound and simulating the working state of TENG using the finite element analysis method, we will build a charge transfer mechanism model of the charges in friction interface and investigate their impact on the triboelectric charge density σ0 and the charge transfer mechanism, and provide a fundamental theory for the design of TENG composition. The biocompatible TENGs developed in this work are expected to collect organism's own energy from breath and heartbeat and transform to medical electronic devices, which is a promising candidate for the application of biomedical field.
能源供给是植入式医疗器件应用的关键,现有电池供电因电能耗尽使病人面临再次手术风险和经济负担。摩擦纳米发电机(TENG)的发展为该问题的解决提供了新方式。然而,现阶段非生物相容性材料制备的TENG,限制了其在临床医学领域的应用。针对上述问题,本课题提出将317L医用不锈钢、尼龙66/乙基纤维素(PA66/EC)的复合物作为摩擦材料制备生物相容性TENG。通过在不锈钢、复合物表面设计微纳阵列结构,研究其对TENG电输出性能的影响及其作用机制。通过调控复合物材料成分及表面分子基团含量,借助有限元分析法对TENG工作状态进行仿真,构建摩擦电荷在摩擦界面的传递机制模型,揭示其对摩擦电荷密度σ0及电荷传递的影响机制,为TENG材料成分的设计与开发提供依据。本课题研究的生物相容性TENG,有望实现置入体内收集并电转化呼吸、心跳等生物体自身能量来驱动植入式医疗器件,在生物医用领域显示出巨大应用前景。
本项目基于生物医学领域电子器件的绿色可持续能源供给问题进行研究。选取生物相容性材料制备摩擦纳米发电机(TENG)。结果发现,生物相容性的317医用不锈钢作为摩擦层材料经过等离子蚀刻、普通光刻技术处理及等离子电离处理后,可有效提高其表面摩擦微观电荷;尼龙66/乙基纤维素按不同比例制备复合薄膜材料脆性大,不易作为摩擦层材料;而乙基纤维素/左旋聚乳酸按不同比例制备复合薄膜,经模板热压法,气泡法等增加表面微观粗糙度,同时对制备的复合薄膜进行等离子处理,可以有效提高摩擦电荷产生;在不锈钢表面粗糙度大于60%,复合薄膜材料1:1热压模板或气泡法制备表面微观花纹时,电输出性能最大,制备的摩擦纳米发电机可以达到短路电流8μA/cm2(约100μA)和开路电压200V。证实通过增大摩擦层表面粗糙度、等离子处理、表面微观分子基团如OH-, -CH3含量等可以有效提高TENG电输出性能,电输出性能保守可以提升40-200%。可实现将普通LED灯泡点亮。在生物形容性评价方面,将制备的TENG进行模拟体液浸泡及细胞毒性实验,结果发现所制备的摩擦纳米发电机具有良好的生物相容性。另外,与本课题相关的柔性导电极板的喷墨打印制备方法及第一性原理的应用的也进行了相关研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
上转换纳米材料在光动力疗法中的研究进展
2A66铝锂合金板材各向异性研究
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
巨噬细胞通过外泌体/XRN1通路降解胰腺导管上皮细胞BRCA1/2 mRNA引发基因组不稳定的机制
超弹性高性能摩擦电发电机输出机理及界面摩擦行为研究
植入式复合型电磁-摩擦纳米发电机及其生物相容性研究
正畸弓丝表面涂层制备及其对摩擦性能和生物相容性影响的研究
金属有机框架材料基高性能摩擦纳米发电机的制备及其摩擦电荷产生、储存与捕获机制研究