Adult stem cells play important roles in the organ growth and regeneration during postnatal development. Adult skeletal muscle stem cells, also known satellite cells, are major contributors to the maintenance and repair of postnatal skeletal muscle tissue. In uninjured muscle, satellite cells reside in a quiescent state, while in damaged muscle satellite cells re-enter to cell cycle and cycling satellite cells undergo differentiation and fuse to damaged myofibers during muscle regeneration. Therefore, the investigation of the molecular mechanism underling the activation, proliferation and differentiation of skeletal muscle satellite cells would not only help us understand biological function of adult stem cells but also have significantly clinical relevance for regenerative medicine. Our lab is focusing on functional studies of non-protein coding RNAs during activation, proliferation and differentiation of satellite cells. Myostatin, a cytokine predominantly expressed in skeletal muscle, functions as an inhibitor of activation, proliferation and differentiation of satellite cells. We have recently identified several myostatin-regulated miRNAs through miRNA transcriptome comparison between myostatin knockout and wild type mice. Those miRNAs are predominantly expressed in skeletal muscle and our data indicate that miR-A may have important function in the differentiation of satellite cells during muscle regeneration. Interestingly, we found that either overexpression or knockdown of miR-A promotes C2C12 cell differentiation. In order to investigate the functional roles of the miRNA in vivo, we have already generated knockout and transgenic mice and phenotypic analysis of those mice indicate critical roles of miR-A during muscle development and regeneration. In this project, we propose that we will investigate the function of miR-A on activation, proliferation and differentiation of satellite cells using miR-A transgenic and knockout mice in vivo. Then we will decipher the molecular mechnism of miR-A function, expecially the mechanism of transcriptional regulation of miRNAs during activation, proliferation and differentiation of satellite cells and muscle regeneration.
骨骼肌干细胞激活、增殖、分化调控机理研究不仅为理解成体干细胞的生物学功能提供理论基础,而且在临床再生医学中具有重要的应用价值。申请者实验室多年从事Myostatin和非编码RNA在肌肉发育与再生中功能与分子机制研究。Myostatin是骨骼肌干细胞负调控因子,前期研究利用 Myostatin基因敲除鼠为材料,我们筛选到若干受Myostatin调控的miRNA,其中一个受Myostatin调控的miR-A影响骨骼肌干细胞分化,我们已制备了miR-A的转基因和敲除鼠。本项目的科学问题是,利用miR-A转基因和敲除鼠为材料,深入研究miR-A在骨骼肌干细胞激活、增殖与分化中的功能与分子机制。我们观察到一个十分有趣的现象,既无论过表达或敲低表达miR-A都可以促进骨骼肌细胞分化。因此,本研究期望通过揭示miR-A这一有趣现象的分子机制,为深入理解miRNA发挥功能的新分子机理提供理论依据。
骨骼肌干细胞对于出生后骨骼肌的生长和损伤再生发挥重要功能。因此探讨骨骼肌干细胞激活、增殖与分化的分子机制十分必要。miRNAs在个体发育和细胞生命活动中起着十分重要的作用,但是miRNA基因自身表达调控以及对成体干细胞激活、增殖、分化的调控其知之甚少。申请者实验室多年从事Myostatin和非编码RNA在肌肉发育与再生中功能与分子机制研究。因此本项目的科学问题是探讨受肌肉抑制素Myostatin信号传导通路调控的miRNAs在骨骼肌干细胞激活、增殖与分化过程中的功能、信号转导和表达调控的分子机制。我们以Myostatin基因敲除小鼠作为动物模型,筛选到若干个受Myostatin调控的miRNAs。本项目重点探讨了受Myostatin调节的miR-A即 miR-431对骨骼肌干细胞异质性、骨骼肌干细胞激活、增殖与分化的调控功能及其分子机制。在此基础上,通过体内体外系统探讨了Myostatin对MiR-431的转录调控及细胞信号转导的分子机制。本项目还发现,与miR-431位于同一基因簇(Dlk1-Dio3)的 microRNA MiR-127通过靶向调控S1PR3促进肌细胞分化。本项目的研究结果不仅对理解非编码RNA的基因结构、表达调控机制以及成体干细胞的生物学功能(骨骼肌干细胞激活、增殖、分化)具有重要理论基础,而且为临床再生医学研究提供可能的药物靶点。项目执行期间,培养博士研究生1名、硕士研究生2名。发表研究论文2篇。另外1篇在Cell Death & Disease修稿
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
转录组与代谢联合解析红花槭叶片中青素苷变化机制
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
SDF-1/HOXB4融合蛋白介导间充质干细胞重建造血微环境及对脐血CD34+细胞定向募集的实验研究
河西走廊荒漠区道地中药材锁阳(Cynomorium songaricum Rupr.)的人工种植研究
Myostatin调控的miRNAs在骨骼肌发育中的功能及表达调控的分子机制
Myostatin调节的miRNAs基因在骨骼肌发育和肌干细胞激活中的表观遗传调控
肉牛骨骼肌卫星细胞增殖分化过程中CAPN1和CASP9 基因的表达及分子调控机制研究
miRNAs及其靶蛋白myostatin在脂肪干细胞治疗骨骼肌运动损伤中的作用机制研究