The remaining challenges, confronting the increasing demand for high power microwave (HPM) applications in both civilian and military fields, promote further investigation on the devices generating narrow-band HPMs. In recent years, with the rapid progress of pulsed power technology and generation of intense electron beams, different narrow-band HPM technologies have been developed extensively and great efforts have been made on increasing the output power levels. However, limited by material technology and some other nonlinear factors occurred in the process of generating HPMs, every single HPM device always has limited output power. On the other hand, narrow-band HPM source usually operates at single band. During recent years, there is so much concern about the threat to electronics imposed by HPM beams with different wavelengths, causing upset and instability in circuits. A new direction for HPM development is to investigate devices capable of producing HPM with two stable and separate frequencies. If a number of HPM sources work at different bands, it is an effective approach to meet the requirements mentioned above by utilizing waveguide-based power combining technologies. On the basis of our prior work, this project will focus on the waveguide-based power combining technology and aims to: (1) Explore HPM waveguide-based power combiner with new structure, and increase the output power level and band-width; (2) Based on waveguide theory, study and design transmission line with high power handling capacity, realizing high transmission efficiency at different frequency simultaneously; (3) Theoretical analysis and design multi-band feed with high power handling capacity, and meet the requirements for multi-band power combining radiation system. In this project, physical phenomenon lies in the new system will be focused on and analyzed, and the feasibility of waveguide-based power combining technology will be discussed, promoting further HPM applications in both civilian and military fields.
高功率微波在不同领域中的应用均需要极大的功率支持,但由于产生高功率微波的物理机制以及微波源工艺结构的固有限制,各种源都有其功率极限;此外,目前成熟的高功率微波源频率单一,在电子对抗等应用方面对不同频段微波的应用需求背景下,亟需对拓宽高功率微波源频带及波段等方面开展研究。通道功率合成技术为实现以上应用需求提供了一条新的途径。本课题在前期工作的基础上,以高功率微波通道功率合成技术为研究对象,旨在解决以下问题:(1)探索具有新型结构的高功率微波通道功率合成器,提高微波输出功率水平和频带覆盖宽度;(2)基于导波理论,研究并设计出具有高功率容量的传输线结构,实现多波段高功率微波的单模传输;(3)理论研究并设计多波段馈源喇叭,满足多波段高功率微波功率合成辐射的要求。项目旨在通过对新系统结构中存在的物理问题分析,论证通道功率合成技术的可行性,为高功率微波进一步在军事和民用领域中的应用发展奠定基础。
高功率微波在不同领域中的应用均需要极大的功率支持,但由于产生高功率微波的物理机制以及微波源工艺结构的固有限制,各种源都有其功率极限;此外,目前成熟的高功率微波源频率单一,在电子对抗等应用方面对不同频段微波的应用需求背景下,亟需对拓宽高功率微波源频带及波段等方面开展研究。通道功率合成技术为实现以上应用需求提供了一条新的途径。首先,高功率微波滤波器作为功率合成及脉宽合成的关键技术之一,亟待突破。根据高功率微波通道合成系统的应用要求,需要设计结构紧凑、功率容量高、通带传输效率高的新型高功率微波滤波器。基于此,本文在对波导不连续性进行模式匹配分析的基础上,结合遗传算法,设计了多种针对不同应用需求的高功率微波滤波器,同时开展了相应的仿真及实验研究。为实现双波段高功率微波的波束扫描和空间指定方向发射,利用模式耦合理论对弯曲同轴波导进行了系统的研究,在此基础上设计了具有过模尺寸的弯曲同轴传输线。为了满足多波段传输需求,本项目进行了多同轴结构传输线的设计。该部分研究内容利用模式耦合理论得到了许多有益的结论,为快速设计相关类型的波导器件奠定了理论基础。通过将同轴馈电结构和变张角型圆锥喇叭结合,设计了一个具有高功率容量的双波段喇叭天线。考虑到喇叭结构的特殊性,利用模式匹配理论对喇叭结构中的典型单元和级联过程进行理论分析计算。仿真结果表明:设计的双波段喇叭天线具有高功率容量特性,满足应用要求。本项目通过对新系统结构中存在的物理问题分析,论证了通道功率合成技术的可行性,为高功率微波进一步在军事和民用领域中的应用发展奠定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
双吸离心泵压力脉动特性数值模拟及试验研究
多源数据驱动CNN-GRU模型的公交客流量分类预测
面向工件表面缺陷的无监督域适应方法
环形绕组无刷直流电机负载换向的解析模型
TGFβ/Smad3抑制lncRNA-ANCR表达在干细胞错误分化及钙化性肌腱炎中的作用及机制研究
高线性GaN微波功率器件研究
高功率微波辐射测试方法研究
纳秒级短脉冲、GW级高功率微波倍增击穿的理论和实验研究
高功率定向微波发生器