The four-wheel drive torque can be independently controlled in the four-wheel independently driven in-wheel motors electric vehicle and the torque as well as the wheel speed can be easily measured. So there are some significant control advantages relative to conventional vehicles in terms of stability, energy conservation and active safety for the four-wheel independently driven in-wheel motors electric vehicle. It is the ideal carrier for studying the new generation vehicle control technology and exploring the optimal vehicle dynamics performance. It has become the research and development hot topics of major automobile companies and research institutes in the worldwide. The steering characteristics control for the four-wheel independently driven in-wheel motors electric vehicle based on the driver's characteristics is mainly studied in the project.The contents are studied as follows: fine dynamics model for the four-wheel independently driven in-wheel motors electric vehicle,driver steering characteristics identification classification method based on the driving simulator, the driver steering characteristics identification and ideal steering characteristic reference model , four-wheel independently driven in-wheel motors electric vehicle driving force control method. The project is the beneficial exploration for electric vehicle intelligent control.Under the premise of the car safe driving in the project, identify the driver's steering characteristics intelligently online and realize the preferencessteering characteristics through the driving force control, which make the vehicle adaptive steering for the driver and improve the driver comfort.The project achievement is the foundation for further study of driver characteristics and electric vehicle intelligent control.It will provide the theoretical basis and technical support for the research and development of the four-wheel independently driven in-wheel motors electric vehicle.
四轮独立驱动轮毂电机电动汽车四轮驱动力矩独立可控、转矩转速易于测得,因此在稳定性、节能和主动安全方面相对于传统汽车具有显著的控制优势,是研究新一代车辆控制技术、探索车辆最优动力学性能的理想载体,已成为世界各大汽车公司和科研院所的研发热点。本项目重点进行基于驾驶员特性的四轮独立驱动轮毂电机电动汽车转向特性控制研究,内容包括四轮独立驱动轮毂电机电动汽车精细动力学模型建模、基于驾驶模拟器的驾驶员转向特性分类方法研究、驾驶员转向特性辨识和转向特性参考模型建模研究、驱动力控制研究。项目对电动汽车智能控制进行有益探索,预期在保证汽车安全行驶前提下,在线智能辨识驾驶员转向特性,通过驱动力控制实现驾驶员喜好转向特性,实现车对人的自适应转向,提高驾驶员转向舒适性。项目成果将为深入研究驾驶员特性和电动汽车智能控制奠定基础,为四轮独立驱动轮毂电动汽车研发提供理论基础和技术支持。
四轮独立驱动轮毂电机电动汽车四轮驱动力矩独立可控、转矩转速易于测得,因此在稳定性、节能和主动安全方面相对于传统汽车具有显著的控制优势,是研究新一代车辆控制技术、探索车辆最优动力学性能的理想载体,已成为世界各大汽车公司和科研院所的研发热点。本项目重点进行了基于驾驶员特性的四轮独立驱动轮毂电机电动汽车转向特性控制研究,内容包括四轮独立驱动轮毂电机电动汽车精细动力学模型建模、基于驾驶模拟器的驾驶员转向特性分类方法研究、驾驶员转向特性辨识和转向特性参考模型建模研究、驱动力控制研究,同时进行了车辆行驶状态和参数估计研究、线控转向四轮轮毂电机电动汽车集成控制研究、四轮独立驱动轮毂电机电动汽车ABS与再生制动协调控制研究、驾驶模拟器试验台和四轮独立驱动与转向电动平台车的搭建,并通过驾驶模拟器试验台及实车对研究方法进行了实验验证。验证结果表明:设计实验工况实现了对驾驶员转向特性的合理分类;基于神经网络建立了驾驶员转向特性模型实现了对驾驶员转向特性地准确辨识;通过驱动力控制及集成控制实现了考虑驾驶员转向特性的整车控制;应用容积卡尔曼滤波理论实现了对车辆行驶状态和参数的准确估计;实现了四轮轮毂电机电动汽车ABS与再生制动的协调控制,提高了制动稳定性和增加了能量回收。项目研究是对电动汽车智能控制的有益探索,在保证汽车安全行驶前提下,实现在线智能辨识驾驶员转向特性,通过驱动力控制实现驾驶员喜好转向特性,实现车对人的自适应转向,提高驾驶员转向舒适性。项目成果为深入研究驾驶员特性和电动汽车智能控制奠定基础,为四轮独立驱动轮毂电动汽车研发提供理论基础和技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
物联网中区块链技术的应用与挑战
miR-218 调控FAK-Slit/ Bmi-1-TGF-β 信号通路抑制脑胶质瘤增殖的机制研究
淋巴细胞mu受体基因启动子Sp1和YY1元件对受体表达的调控机理及其对SIV感染细胞病理过程的影响
四轮毂电机独立驱动电动汽车的转矩控制策略研究
四轮独立驱动电动汽车用模块化多单元磁通切换永磁轮毂电机研究
轮毂电机驱动电动汽车多场耦合振动机理及振动抑制研究
四轮独立转向-独立驱动车辆转向模式动态切换原理与方法研究