Targeted therapies have been intensively investigated with multiple acclaimed successes, however, little is known about how microenvironment is involved in these processes. We have established that targeting AURKA inhibits epithelial-mesenchymal transition (EMT) and migration of cancer cells. Based on our previous data that AURKA targeted reagent alters cytokine secretion of immune cells, we hypothesis that targeted therapies shape tumor microenvironment, which may in turn affects the process of therapy. Microfluidic chip is a novel platform for studying intercellular interactions, which has been successfully developed in our laboratory. In this project, we try to develop a microfluidic system that mimics the tumor niche during AURKA targeted therapy, in which we will investigate how targeted reagent modifies immune cells and how these processes affect the procedure of therapy. Specifically, how targeting AURKA alters secretion of chemokines via NF-κB pathway that modulate the EMT and migration of cancer cells. We will then validate the discoveries in mice model with spontaneous breast cancer. Moreover, exploration through bioinformatics database and clinical samples enable us to systematically solidify our findings. Collectively, our project is to develop a microfluidic platform for investigating the role of tumor niche in AURKA targeted therapy, which we believe will provide informative evidence for rational research and clinical application of targeted therapies.
分子靶向治疗因其疗效显著成为肿瘤研究的热点,但其作用于肿瘤微环境进而对疗效的影响却知之不多。我们前期研究确立靶向AURKA有效抑制肿瘤细胞上皮-间充质转化(EMT)及迁移,新近发现其影响免疫细胞及其细胞因子分泌。因此,我们推测靶向治疗能改变肿瘤微环境,进而影响肿瘤治疗的进程。微流控芯片这一新兴技术可有效模拟肿瘤微环境,其设计和制作方法我们已掌握。据此,本项目将利用微流控芯片模拟肿瘤微环境,探究靶向肿瘤AURKA治疗过程中微环境免疫细胞的动态变化及肿瘤细胞和免疫细胞的相互作用;通过靶向治疗对免疫细胞NF-κB的调控,对免疫功能及细胞因子分泌的影响,阐明靶向治疗抑制肿瘤细胞EMT及迁移的机制;通过动物模型实验、生物信息学分析和临床标本验证进一步探索靶向药物对微环境的改造机制。本项目旨在建立模拟肿瘤微环境的微流控新型平台,探索微环境在肿瘤分子靶向治疗中的作用,为靶向药物的研究和应用提供科学依据。
肿瘤微环境对肿瘤侵袭具有重要的调控作用,而该作用在分子靶向治疗中的研究较少。本项目首先构建了三维微流控细胞模型,可以模拟体内微环境、实时观测肿瘤细胞的侵袭过程。研究发现肿瘤细胞呈现群体性侵袭的模式,AURKA、RUVBL1和P62高表达均能促进肿瘤细胞的侵袭过程,而抑制或者敲降AURKA、RUVBL1和P62均能抑制肿瘤细胞的侵袭过程。进一步,我们探讨肿瘤微环境中的间充质干细胞(MSCs)对肿瘤侵袭的作用。研究发现MSC细胞与肿瘤细胞混合后以“成球-出芽-侵袭”模式进行迁移,肿瘤细胞沿着MSCs侵袭的轨迹进行迁移,而且缺氧微环境能增强MSCs介导的肿瘤细胞侵袭能力。最后,我们研究AURKA小分子抑制剂P21靶向抑制过程中MSCs对肿瘤侵袭的影响。发现P21能有效抑制微环境中MSCs对白血病细胞结合作用,从而抑制MSCs对白血病细胞增殖的促进作用。本项目的研究有利于深入理解分子靶向治疗过程中微环境变化对肿瘤侵袭影响,为临床靶向药物的应用提供理论指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
基于SSVEP 直接脑控机器人方向和速度研究
中国参与全球价值链的环境效应分析
针灸治疗胃食管反流病的研究进展
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于微流控芯片的肿瘤微环境中细胞通讯机制的研究
基于微流控芯片的神经-肿瘤相互作用研究
基于微流控芯片的涎腺腺样囊性癌分子靶向治疗基础研究
基于微流控芯片技术定量研究肺癌干细胞在转移微环境中的迁移