The common small module spiral bevel gear is manufactured by double-faced generating method, which is that the gear and pinion teeth are milled by the double-faced generating method. It has high machining efficiency, but the mesh quality is not easy to be controlled. For this reason, it's difficult to improve the gear transmisson performance. For enhancing the manufacturing level of our contry's samll module spiral bevel gear, a new machining method is prompted: the steel pinion tooth profile is milled by double-faced generating method, while the gear is machined with powder metallurgy pressing, sintering and precision forming. Controlling the powder metallurgy gear tooth deviation, the mesh quality between the gear and pinion can be improved obviously. This method has the character of high machining efficiency and low energy consumption. For the method above, this project will deeply research the tooth meshing theory and the tooth profile error control mechanism. Based on local conjugate theory and tooth contact analysis technology, the project will design ideal gear tooth profile, which has good mesh quality with the pinion tooth profile.This ideal gear tooth profile can be used as datum of tooth deviation measurement. Based on the ideal gear tooth profile, the project will establish the precision 3D model of the gear mold cavity, and research the machining and correcting methods of the gear mold cavity tooth profile. Establishing correct tooth deviation measurement model, the project will research the pricision measurement method of small module spiral bevel gear, and the tooth profile deviation compensating mechanism. The project will explore the rules of each powder metallurgy technics in affecting tooth form error, and combine with tooth deviation measurement technology, to feedback correct the gear cavity tooth profile, so the gear tooth deviation can be controlled to fit pricision demand. For the small module spiral bevel gear powder metallurgy near net forming process, This research can provide the theoretical surpport and key technology surpport.
传统的小模数弧齿锥齿轮采用双重双面法加工,加工效率较高但齿面啮合质量难以控制,从根本上限制了其传动性能的提高。为改善我国小模数弧齿锥齿轮的生产现状,本项目拟采取的加工方法为:钢质小轮仍采用双面法展成铣齿,大轮由合金粉末压制、烧结、精整成形,控制大轮的齿面偏差,使其与小轮具有良好的啮合性能。针对本高效、节能的加工方法,深入研究相关的齿面啮合理论与齿面误差控制机理。基于局部共轭原理、齿面接触仿真与预控技术,寻求与小轮齿面良好啮合的理想大轮齿面,作为大轮齿面偏差测量的基准。基于该齿面,研究对大轮模具精确建模、模具齿形的加工与修整方法。建立正确的齿面测量模型,研究齿面精确测量与齿面偏差补偿的方法。探索粉末冶金各工艺环节对大轮齿面偏差的影响规律,结合齿面偏差测量技术,反馈修正大轮的成形模具,使得粉末冶金大轮的齿面符合精度要求。本项目将为小模数弧齿锥齿轮粉末冶金近净成形制造提供理论依据与关键技术支撑。
小模数弧齿锥齿轮广泛应用于电动工具、缝纫设备、家电等行业,随着整机性能的不断提高,对小模数弧齿锥齿轮的啮合性能的要求也越来越高。小模数弧齿锥齿轮通常采用双重双面法加工,其啮合性能往往难以保证。若采用常规的双齿面配对加工,由于模数小,加工操作困难、效率低下,不能适应大批量加工的要求。当前,在控制生产成本的前提下,迫切需要提高小模数弧齿锥齿轮的制造精度与啮合性能。.粉末冶金法是一种少切削或无切削制造、节能、高效的工艺方法。粉末冶金法生产的弧齿锥齿轮大轮一般不需要后续加工,在我国有关绿色制造、发展低碳经济的政策背景下,采用粉末冶金工艺生产小模数弧齿锥齿轮,意义重大。国内企业由于在弧齿锥齿轮的啮合特点、齿面误差控制方面缺乏理论支持,试制的粉末冶金弧齿锥齿轮的啮合性能与国外同类产品相差甚远。.为改善我国小模数弧齿锥齿轮的生产现状,本项目研究的加工方法为:钢质小轮采用双面法展成铣齿,大轮由粉末冶金成形,控制大轮的两齿面分别与小轮的两齿面相配,提高齿轮副的啮合质量。.本项目针对以上加工方法,具体内容及其科学意义如下:.(一)深入研究了两配对齿面具有良好啮合性能的齿面啮合理论,设计了齿面展成参数。根据局部共轭原理,分别设计粉末冶金大轮的两齿面与双面法铣齿的小轮相配,在理论上突破了当前铣齿加工模式对小模数弧齿锥齿轮性能的限制。.(二)基于齿面啮合理论、齿面展成原理,精确创建了粉末冶金大轮的三维模型。根据齿面展成参数,建立铣齿加工的数学模型,由切削刃锥面经一系列坐标变换得到大轮的齿面,精确地创建了大轮齿面的三维模型,突破了小模数弧齿锥齿轮粉末冶金近净成形工艺中的核心技术问题。.(三)研究了小模数弧齿锥齿轮的测量,以及基于齿面展成参数修正的齿面修正机理。基于齿面精度测量技术,实现了粉末冶金大轮的齿面精确测量。基于齿面展成参数修正,分析了大轮粉末冶金齿面的修形方法,为齿面精度控制奠定了理论基础。.(四)研究粉末冶金小模数弧齿锥齿轮的齿面偏差控制机理,通过粉末冶金大轮的试制与批量投产,验证了理论分析的正确性。创建了精确三维模型;制作了大轮模具;进行了粉末冶金试验;分析了粉末冶金工艺对齿面的变形影响;基于齿面偏差测量技术,对大轮三维模型进行了修正。.本项目为小模数弧齿锥齿轮的粉末冶金生产提供了理论和工艺技术支撑,实现了小模数弧齿锥齿轮的低能耗、高精度、高效率生产。
{{i.achievement_title}}
数据更新时间:2023-05-31
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
气载放射性碘采样测量方法研究进展
掘进工作面局部通风风筒悬挂位置的数值模拟
响应面法优化藤茶总黄酮的提取工艺
基于MPE局部保持投影与ELM的螺旋锥齿轮故障诊断
小锥角弧齿锥齿轮近净成形机理与试验研究
直齿锥齿轮端面滚齿成形机理与齿面控制理论
汽车驱动桥弧齿锥齿轮齿面偏差网络智能控制理论研究
弧齿锥齿轮超声双频激励研齿的齿面高阶修形机理与研齿路径规划研究