The current way to forge is not precision enough and the efficiency of gear shaping is quite low, furthermore, the current methods are not able to process high performance gear surfaces. The present project brings out a brand new face-hobbing way to achieve the aim of processing high quality gears in a great level of expeditiousness and accuracy using the hypocycloidal straight-line’s special characteristic of straight-line retrograding. This method possesses the feature of continuous indexing and double flank cutting hence it raises a high demand for the designing as well as the actual machining of tooth surfaces. Basing on the face-hobbing mechanism for generating straight bevel gear and the characteristics of double flank cutting and equi-depth tooth, the central aims of the project are to explore the flank generating law, and theorize the tooth surface controlling targeted for double flank cutting and meshing performance as well. The purpose of this project can be presented in five sub-topics:.1. Studying the mathematical model of face-hobbing specialized in dealing with straight bevel gears meanwhile analyzing the realization of processing and the effect law of flank topographic correction caused by the incomplete degradation peculiarities of extending hypocycloidal straight-line. .2. Comparative analysis of the tooth surface topology, contact performances, bearing capacity and dynamic behavior for equi-depth and tapered straight bevel gears..3. Structuring a stage for designing ease-off flank meanwhile making the break-through from a geometric control based on micro-points to an exact control based on the whole tooth surface..4..Establishing the new mathematical model for analyzing from the following aspects: tooth contact analysis, loaded tooth contact analysis meanwhile providing a valid analyzing mean to direct tooth surface design under operating conditions..5. Founding an prediction strategy of meshing performances for real tooth surfaces meanwhile proposing a tooth surfaces equivalent correction method targeted for meshing performance..This project is focusing on building a whole system for face-hobbing straight bevel gears that contains the designing of tooth surface, the analyzing of its quality, the realization of it, the discovering and the correcting of its deviation. Thus, this project will provide theoretical direction and technical support for elevating the level of designing and machining of straight bevel gears as well as leading them into the international high-end market.
直齿锥齿轮现有的加工方法都无法满足高精度、高性能齿面的加工。本项目利用内摆线特有的直线退化特性,提出直齿锥齿轮全新的端面滚齿法,能连续分度、高效、高精度地加工。本项目根据直齿锥齿轮端面滚齿展成机理及双面切削、等高齿特征,分析延伸内摆线不完全退化特性对齿面的影响规律,探索齿面加工运动控制策略;探明端面滚齿加工的等高齿与刨齿加工的渐缩齿在齿面拓扑结构、接触特性、承载能力以及动态特性的差异;创建具有高齿面设计自由度的“融合法”, 实现全齿面啮合性能的精确控制;探寻由齿面拓扑结构反求展成切齿参数的控制机制;创建高效的轮齿接触和承载接触分析新算法——“分解法”和“离散解析法”,建立基于工况的齿面设计控制策略;建立实际齿面传动性能的预测机制,提出针对啮合性能的齿面等效补偿修正方法。本项目的研究对提升我国直齿锥齿轮的制造水平,开拓国际高端市场具有重要意义。
目前直齿锥齿轮加工精度和加工效率低,难以实现高性能齿面加工,本项目利用内摆线特有的直线退化特性,提出直齿锥齿轮全新的端面滚齿法连续分度、双面法展成加工,两侧齿面一次加工成形,具有加工效率高和齿面加工精度高等特点。主要研究成果如下:.1建立具有刀倾、刀转的端面滚齿展成加工数学模型;分析了延伸内摆线不完全退化特性对齿面修形的控制特性及实现机制;研究齿面拓扑结构与运动参数的内在关系,推导了具有共轭特性的两齿面展成切齿参数计算公式;通过展成切齿修正参数与齿面拓扑结构的映射关系,建立了由齿面拓扑结构反求切齿参数的修正策略。.2创建高效的轮齿接触分析新算法—“分解法”。建立了统一的齿面接触和边缘接触的轮齿接触性能分析数学模型,解决了齿面接触和边缘接触数学模型不统一、需要分别求解的问题;解决了传统算法求解性差的、计算量大,精度较低的问题;分解算法可推广应用于其他类型齿轮副的啮合仿真分析。实验验证了分解算法的有效性。.3创建精确的轮齿承载接触分析算法—“离散解析法”; 建立了实际工况下实测齿面精确的齿轮副啮合有限元模型,通过虚拟滚检和承载接触分析,预测实际齿面实际工况下的承载性能;分析了不同齿面拓扑结构在接触特性、承载能力以及动态特性的差异,从而确定不同工况下的齿面控制设计策略;实际工况下实测齿面齿轮副啮合有限元模型,可用于通用有限元分析软件进行静态和动态性能分析。.4创建了啮合性能主动控制的全新齿面设计法“融合法”,将预定义的传动误差和齿面印痕信息有效的融入到齿面拓扑结构中,整个齿面的拓扑结构得到精确控制,从而精准控制啮合齿轮副的传动误差的幅值与形状和齿面印痕。这种精确的齿面啮合新的主动设计方法也为推广应用于其他齿轮副的设计。.本项目研究成果对提升直齿锥齿轮设计、性能分析及制造水平提供理论基础和技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
小模数弧齿锥齿轮粉末冶金近净成形齿面偏差控制机理研究
螺旋锥齿轮端面滚齿加工的理论及其实现技术研究
弧齿锥齿轮超声双频激励研齿的齿面高阶修形机理与研齿路径规划研究
直齿柱齿轮开放成形理论与技术研究