High-temperature CO2 adsorbents are key to the sorption enhanced hydrogen production (SEHP) processes, which can not only increase the conversion of fuels and decrease the whole process energy comsuption, but also capture pure CO2, preventing it to be released into atmosphere. The captured highly concentrated CO2 can then be stored or converted into value added products. In this proposed project, novel layered double hydroxides (LDHs) based high temperature CO2 adsorbents will be developed by tuning the structure of LDHs via intercalation of organic anions or exfoliation-hybridization. The influence of the length and structure of organic anions and the physicochemical property, surface charge density, and hybridization status of the hybriding materials such as graphene, carbon materials, titanates, and silicates will be systematically investigated. High temperature CO2 adsorbents with high capacity and good long-term stability will be designed. In the meantime, the operating conditions of these adsorbents in sorption enhanced water gas shift (SEWGS) process will be optimized, and the CO2 adsorption-desorption kinetics and mechanism will be revealed. The ultimate goal of this proposed project is to deveolop high-temperature CO2 adsorbents which are highly efficient and stable, and with our own and independent intellectual property right.We wish this project could make great contribution to the CO2 capture, storage and utilizaiton, and lead to a sustainable development of our society.
高温CO2吸附材料在吸附增强型产氢反应过程中具有重要应用,不但能提高燃料的转化率、降低整个工艺的能耗,还能捕集CO2,避免其排放到大气中且为后续CO2存储和转化提供保障。本课题拟利用有机阴离子插层和剥离-杂化两种方法对类水滑石进行结构调控,系统研究有机阴离子的碳链长度和碳链结构,以及杂化材料(如石墨烯、碳材料、钛酸盐、硅酸盐等)的物理化学特性、表面电荷密度、及类水滑石和杂化材料的结合方式等因素对CO2吸附性能的影响规律;构建出吸附性能更高、热稳定性和循环使用性更强的类水滑石基高温CO2吸附材料;优化吸附材料在吸附增强型水气转换反应工况下的运行参数;探究CO2在吸附材料表面的吸-脱附动力学和吸附机制。本项目的最终目标是开发具有我国自主知识产权的、高效稳定的高温CO2吸附材料,推动CO2减排,为实现我国社会经济可持续发展和营造良好的国际环境提供技术支撑。
CO2作为一种主要的温室气体其捕获一直是研究的热点。本课题系统研究了一系列不同碳链长度和碳链结构的有机离子插层Mg3Al1 LDH对CO2吸附性能的影响规律,并构建了类水滑石/碳材料(氧化石墨烯/碳纳米管)复合材料,对其合成条件、吸附CO2性能、吸附条件、热稳定性、循环使用性能、和吸附机理等做了系统深入研究。通过材料设计成功制备出不同碳链长度的一元和二元线性羧酸根及含苯环有机阴离子插层的Mg3Al1 LDH,通过系统探究发现了长碳链的羧酸根插层Mg3Al1 LDH有着较好的CO2吸附性能,直链结构的羧酸根比含苯环有机阴离子插层Mg3Al1 LDH的 CO2吸附性能好。其中,长碳链、直链结构的棕榈酸根插层的Mg3Al1 LDH(LDH-C16)为吸附量最优材料,吸附量达到0.91 mmol g-1。通过调控LDH-C16的镁铝比例及负载三元碱金属硝酸盐(LiNO3、NaNO3、KNO3)对其进行改性。研究表明,Mg20Al1-C16 LDH负载55 mol% 碱金属硝酸盐能将吸附量提高至3.21 mmol g-1,该材料表现出高CO2吸附性能和良好的循环稳定性,这种新型的CO2吸附剂在SWEGS反应中具有良好的应用前景。系统研究了LDH二维纳米单层的制备方法,采用层层剥离的方法制备了四种类水滑石纳米单层(LDH-NS),在对LDH-NS表征过程中,开发了一种简单,方便,可靠的证明LDH是否在甲酰胺中被剥离的方法—凝胶XRD法。另外还证明了LDH剥离液的浊度与被剥离程度没有必然的联系。采用静电自组装法合成了四种类水滑石/氧化石墨烯(LDH-NS/GO)复合材料;通过测定四种复合材料的吸附CO2性能,确定了每种复合材料的最佳合成条件,确定了复合材料的结构、形貌以及复合形式,解析了其提高吸附CO2效果的原因;分别采用静电自组装法和共沉淀法合成了三种不同类水滑石/氧化碳纳米管(LDH/OCNT)复合材料,通过探究其吸附CO2性能,确定了最佳复合比例。最后,本课题对LDH的吸附位点及吸附机理做了进一步探究,通过XRD和固体核磁表征提出了由于方镁石中的Mg被Al替代或者八面体水镁石中Al原子的空缺导致活性物质Mg-O键的出现可能是吸附过程的主要机理。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
特斯拉涡轮机运行性能研究综述
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
共同调控PirB和NgR1的microRNAs参与电针促进脑缺血后轴突再生的作用及其表观遗传学机制
从NLRP3炎症复合信号通路探讨“宣肺益肾、化痰解痉”法调控中性粒细胞性哮喘固有免疫通路分子机制研究
基于HMGB1和Mac1结合与NADPH氧化酶串话探索“嗅三针”通过嗅觉通路对帕金森病干预效应的研究
类水滑石中温变压吸附CO2吸附机理及传热传质特性研究
类水滑石高效专性磷吸附剂的构建及吸附作用机制
碱金属硝酸盐强化类水滑石基CO2吸附剂的机理研究
剥离-共组装法制备类水滑石/膨润土新型复合吸附材料及其同步吸附阴阳离子重金属研究