We plan to study the asymptotic behavior, as the discount factor goes to 0, of the viscosity solutions of the discounted equations of time-periodic Hamilton-Jacobi equation and weakly coupled Hamitlon-Jacobi equations. We'll study it with PDE method and variational method.under more generally conditions (Compared to superlinearity condition under Tonelli frame, we'll do it under coercivity condition). We'll probe.the dynamical property of the viscosity solutions in this process and discuss the connections and differences between the Mather measure under the Tonelli conditions and the measure we'll construct under more generally conditions.
我们拟在更一般的条件(相对于Tonelli条件中的超线性增长性,我们在强制性条件)下,结合PDE方法和变分法,研究时间周期Hamilton-Jacobi方程及弱耦合 Hamilton-Jacobi方程组相应的discounted方程的粘性解在discount因子趋于0时的收敛情形。研究这个过程中粘性解所反映的动力学性质,以及在此种条件下建立起来的测度与Tonelli条件下Mather测度的联系与区别。
{{i.achievement_title}}
数据更新时间:2023-05-31
肥胖型少弱精子症的发病机制及中医调体防治
针对弱边缘信息的左心室图像分割算法
基于旋量理论的数控机床几何误差分离与补偿方法研究
现代优化理论与应用
多元化企业IT协同的维度及测量
Mather理论与Hamilton-Jacobi方程的粘性解
弱KAM理论及Hamilton-Jacobi方程的粘性解
关于接触Hamilton-Jacobi方程粘性解的奇性传播
Hamilton-Jacobi方程粘性解奇点动力学及其应用