This project proposes a two-stage-fault-tolerant control scheme for a class of balance systems, based on balance compensation and adaptive reconstruction, and with considering the influence from their balance subsystems to their movement subsystems in unbalance faults, in order to solve the problem that the realization of fault-tolerant-control is very difficult when the dynamics of faulty systems are complicated. At first, the requirements of running safety and the relationship of energy change for the faulty systems are analyzed, so as to employing Hamilton principle to obtain a set of balance equations, from which the balance conditions can be solved. Then, take the conditions as the target of the balance compensation, the relevancy and coordination of the balance units can be designed by using passivity strategy, the idea of the design is to redistribute the energy of each unit to make the system to reach a new balance state. Because the dynamics of the system in the new state is completely unknown, and no apriori knowledge can be obtained, so fuzzy systems with undefined basis functions and weights are employed. By being equipped with adaptive mechanism, they can approximate the unknown dynamics online. Then combining with dead-zone compensation and disturbance rejection techniques, the control law can be reconstructed by the approximated dynamics to tolerate the unbalance faults, and the adaptive laws are designed by minimizing the output tracking error, so an acceptable fault-tolerant performance can be achieved. At last, a practical system in our laboratory is taken to realize the proposed scheme to verify its feasibility. This scheme is clear in mechanization and easy to design, it is also convenient to realize. Therefore, it leads a new way on fault-tolerant control for unbalance systems.
本项目针对一类平衡结构的系统,考虑非平衡故障下其平衡子系统对运动子系统的影响,提出一种基于平衡补偿和自适应重构的两级容错控制方案,旨在解决系统故障时动态特性复杂,难以实现容错控制的问题。首先通过分析故障系统的能量转化关系,应用哈密尔顿原理根据系统安全运行要求建立平衡方程,并从中解得平衡条件;然后以平衡条件作为补偿目标,采用无源控制策略设计各平衡单元的关联协调,通过重新分配各单元的能量使系统达到新的平衡状态。在新平衡状态下系统的动态特性未知且无法获得先验知识,本项目采用基函数和权值均待定的模糊系统,通过自适应调节在线逼近未知动态,并结合死区补偿和扰动抑制技术重构控制律,按输出跟踪误差最小原则设计自适应律达到可接受的容错性能。最后将提出的两级容错控制方案在实验室实物系统上实现,验证其可行性。该方案具有机理清晰、设计方法简单、可实现性强的特点,为系统非平衡故障的容错控制研究提供了一种新思路。
本项目针对一类平衡结构的系统,考虑非平衡故障下其平衡子系统对运动子系统的影响,提出一种基于平衡补偿和自适应重构的两级容错控制方案,旨在解决系统故障时动态特性复杂,难以实现容错控制的问题。首先通过分析故障系统的能量转化关系,应用哈密尔顿原理根据系统安全运行要求建立平衡方程,并从中解得平衡条件;然后以平衡条件作为补偿目标,采用无源控制策略设计各平衡单元的关联协调,通过重新分配各单元的能量使系统达到新的平衡状态。在新平衡状态下系统的动态特性未知且无法获得先验知识,本项目采用基函数和权值均待定的模糊系统,通过自适应调节在线逼近未知动态,并结合死区补偿和扰动抑制技术重构控制律,按输出跟踪误差最小原则设计自适应律达到可接受的容错性能。最后将提出的两级容错控制方案在实验室实物系统上实现,验证其可行性。该方案具有机理清晰、设计方法简单、可实现性强的特点,为系统非平衡故障的容错控制研究提供了一种新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于分形维数和支持向量机的串联电弧故障诊断方法
基于FTA-BN模型的页岩气井口装置失效概率分析
集成故障诊断与鲁棒重构容错控制方法研究
随机布朗离散系统的故障重构和容错控制:描述系统框架
非齐次随机系统的故障估计与容错控制研究
基于记忆调度优化的鲁棒故障估计与闭环补偿容错控制方法研究