Orbital angular momentum (OAM) is a fundamental physical quantity. In the interdisciplinary research areas between physics and optical communications, it is possible to provide a new dimension resource by introducing OAM into optical communications, which might address the capacity crunch due to the excessive exploitation of all existing dimensions of optical waves. In this project, by exploring new mechanisms, new devices, new technologies, and new applications in the fields of OAM optical communications, it is intended to achieve fractional OAM optical communications with high resolution, broad bandwidth, low loss, good scalability, high efficiency, and high density. The research works start from two key scientific issues: how to implement the integrated transmitter and receiver of OAM and how to achieve high efficiency (de)multiplexing of multiple OAMs. Deep researches are carried out focusing on the basic theories, core devices, key technologies, and system applications of high density fractional OAM communications. Firstly, the manipulation of amplitude and phase of spatial optical filed utilizing metasurface structures is proposed and the basic theories and characteristics are studied. Secondly, the OAM photonic integrated devices based on metasurface structures are designed and fabricated. Thirdly, two key technologies are investigated: 1) high efficiency simultaneous (de)multiplexing and parallel detection of multiple OAMs; 2) high density fractional OAM communications. Finally, using the fabricated photonic integrated devices based on metasurface structures, system experiments of high density fractional OAM communications are studied.
轨道角动量是一个基本物理量。在物理学和光通信学科交叉领域,将轨道角动量引入光通信可以提供新维度资源,有望解决光波已有维度资源开发殆尽而显现的容量危机。本项目通过对轨道角动量光通信新机制、新器件、新技术和新应用的探索研究,旨在实现高分辨、宽带宽、低损耗、可扩展、高效率和高密度的分数阶轨道角动量光通信。项目围绕“如何实现轨道角动量光子集成收发”和“如何实现多个轨道角动量高效(解)复用”两大关键问题展开,深入开展高密度分数阶轨道角动量光通信的理论基础、核心器件、关键技术及系统应用研究。首先,提出利用超颖表面结构对光场空间幅度和相位进行操控并进行基础理论及特性研究;其次,设计研制轨道角动量超颖表面结构光子集成器件;然后,研究多轨道角动量高效同步(解)复用和并行检测关键技术及高密度分数阶轨道角动量光通信的关键技术;最后,利用研制的超颖表面结构光子集成器件开展高密度分数阶轨道角动量光通信系统实验研究。
为解决光通信新容量危机器件技术难题,利用超颖表面结构操控光场空间幅度和相位,实现高分辨、宽带宽、低损耗、可扩展、高效率、高密度的分数阶轨道角动量光通信,主要研究内容包括:..1、轨道角动量超颖表面结构光子集成器件设计研制.研究了全电介质椭圆超颖表面结构可见光和近红外轨道角动量光束产生和检测;基于反射超颖表面结构实验产生中红外轨道角动量光束;光纤端面金属超颖表面结构产生高阶线偏振模式;光纤端面超颖表面结构产生轨道角动量模式;偏振多样宽带轨道角动量光束硅基产生器。..2、多轨道角动量高效同步(解)复用和并行检测.提出了一种新型轨道角动量模式(解)复用方案,采用小波变换思想扩展对数极坐标变换,构造了类小波共形映射,可对轨道角动量模式进行低串扰(解)复用。进一步实验实现了轨道角动量模分复用系统,实现了10-Gbaud的QPSK信号传输。..3、高密度分数阶轨道角动量光通信实验.研究了轨道角动量小数阶模式复用通信,结合MIMO均衡和LDPC编码,实验实现了10-Gbaud的QPSK/16-QAM信号在四种小数阶间隔下(0.6、0.4、0.2、0.1)的2个轨道角动量复用通信。..4、超颖表面结构轨道角动量光通信系统实验.研究了金属V字形天线超颖表面产生多轨道角动量光束信息广播;研究了全电介质椭圆超颖表面产生贝塞尔光束和轨道角动量光束信息广播;实验实现了电介质超颖表面结构轨道角动量光信息传输。..发表SCI论文60篇,其中Science Advances 1篇、Light Sci. Appl. 1篇、Optica 1篇、Laser Photon. Rev. 1篇、ACS Photon. 1篇、Opt. Express 20篇、Opt. Lett. 12篇、Sci. Rep. 7篇、Appl. Phys. Lett. 2篇、Phys. Rev. A 1篇、Photon. Res. 2篇(1篇特邀)、J. Lightwave Technol. 1篇、Chin. Opt. Lett. 2篇(特邀)、Opt. Commun. 1篇(特邀)、 IEEE J. Quantum Electron. 2篇、IEEE Photon. J. 1篇、J. Opt. 1篇、Appl. Sci. 1篇(特邀)。授权国家发明专利6项。..研究成果(核心器件和关键技术)对实现光通信可持续扩容具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
家畜圈舍粪尿表层酸化对氨气排放的影响
铁酸锌的制备及光催化作用研究现状
异质环境中西尼罗河病毒稳态问题解的存在唯一性
环境信息披露会影响分析师盈余预测吗?
基于分数阶轨道角动量光束的模分复用系统干扰机理研究
超颖表面多功能主动可调波前操纵
基于手性相互作用的光学超颖表面
分数阶超扩散方程的Fujita临界指标