The conventional resonance energy transfer has been widely used in the field of biochemical analysis. However, its applications are subjected to limitation, which results from the finite efficient distance between donor and acceptor, as well as the demanding requirements of spectral overlapping, and other factors. In order to address these bottleneck problems, gold nanorods, which present excellent optical properties and tunable absorption wavelength, are served as probes for ultra-long-rang energy transfer (UlrRET) and as nanoplatform for new spectral analysis. The target of this present project is to establish sensitive methods for biochemical analysis, and the key scientific issue is to analyze the mechanism of ultra-long-rang energy transfer. In this project, a series of gold nanorods are prepared with various aspect ratios with chemical synthesis and physical characterization, and then the factors such as aspect ratios and assembly modes are to investigate in the process of ultra-long-rang energy transfer. Further by taking advantage of surface functionalization with targeting molecules, applications of gold nanorods are to achieve in the field of biomedical analysis. The theory for ultra-long-rang energy transfer resonance energy transfer is investigated to solve the shortcomings of low resonance energy transfer efficiency, which can expand the potential applications of gold nanorods in the field of biochemical analysis and molecular medicine, providing new ideas for ultrasensitive biochemical detection.
传统共振能量转移在生化分析领域已得到广泛应用,但较短的有效距离和苛刻的光谱重叠要求限制了其进一步应用。为突破传统能量转移距离极限,解决其应用中的瓶颈问题,本项目拟以光学性能优异和波长可调的金纳米棒构建超长程共振能量转移体系,建立新的光谱分析平台。本项目以建立灵敏的生化分析方法为目标,以解析超长程共振能量转移的机制为关键科学问题。项目拟制备出一系列径向比不同的金纳米棒,探讨金纳米棒径向比、组装模式等因素对超长程能量转移的影响,进一步利用靶向性分子的表面功能化,实现金纳米棒在生物医学领域的分析研究。本项目在理论上探讨了超长程共振能量转移机制,突破了经典共振能量转移极限距离限制,在应用上拓展了金纳米棒组装体在生化分析传感领域的潜力,为实现生化医药分子高灵敏检测提供了新思路。
金纳米棒在能量转移过程中起能量受体的角色。本项目通过金纳米棒尺寸的调节,以及能量供体的改变,结合荧光光谱、吸收光谱、暗场成像等技术,对影响能量转移效率的因素进行了初步研究并应用于分析传感应用。首先固定金纳米棒的尺寸,通过筛选不同的能量供体,调控能量供体与受体之间的光谱匹配程度,以达到提高能量转移效率的目的,并应用于细胞内及罗非鱼中的金属离子检测;其次以卟啉为能量供体,通过化学腐蚀等技术调控金纳米棒的尺寸,以研究能量转移的效率,利用荧光的恢复建立了肝素钠、胆固醇等生化药物分子的分析方法;进而通过化学还原方法,在金纳米棒表面还原不同厚度的银单质以调控能量供体与能量受体之间的距离以及光谱的重叠程度,随着银壳厚度的增大,能量共受体之间的距离增大,能量转移效率降低,荧光逐渐恢复,可以用于肾上腺素的检测。能量转移的分析传感应用已经完成,能量转移过程中的各种影响因素已经考查,但是具体的理论公式需要进一步模拟和实验验证。. 综合上述结果,本项目为探讨金纳米棒在能量转移的应用以及机制研究奠定了坚实的工作基础,同时对提高转移效率提供了重要的启示。项目资助发表论文17篇,其中SCI论文16篇,国内T类1篇,尚有7篇待发表,授权专利1项。培养硕士研究生5名,已毕业2名,3名在读。项目投入经费25.0000万元,支出17.1929万元,各项支出与预算基本相符,剩余的经费计划用于本项目的后续研究支出。.
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
量子点-金纳米棒荧光共振能量转移系统的构建及其传感应用研究
长程共振能量转移及其在生物医药分析中的应用
基于长程共振能量转移的生物医学成像分析基础研究
等离子体共振瑞利散射能量转移纳米光谱研究及其在阴离子分析中的应用