In recent years, the problem of environmental pollution of thiophene sulfides from liquid fuel has received considerable attention. Adsorptive desulfurization (ADS) could remove the thiophene sulfides with ultra-deep desulfurization of diesel oil. However, the low adsorptive selectivity and the low adsorptive capacity for organo-sulfur compounds would limit the application of ADS. In this work, TiO2@CuO/C microsphere with core-shell architecture will be synthesized. The TiO2 shell could remove thiophene sulfides from fuel with UV photocatalysis-assisted oxidative desulfurization, and the Cu based-Metal organic frameworks (MOFs) derived porous CuO/C core could adsorb and separate the oxidized products (sulfoxides and/or sulphones). Thus, this microsphere would possess the reaction/adsorption coupling system. First of all, the TiO2@CuO/C is synthesized. The effects of reaction condition on the forming of core-shell architecture are studied and the structural control of morphology, dimension and pore structure of this composite microsphere are discussed. Secondly, formation mechanism of core-shell architecture is studied by characterization, such as scanning electron microscope (SEM), Brunauer-Emmett-Teller surface area measurement (BET), X-ray Diffraction (XRD). Then thiophene sulfides is used as model oil in this work, and the desulfurization efficiency, adsorption capacity, adsorptive selectivity, and life of TiO2@Cu-BTC composite microsphere are determined. Finally, desulfurization thermodynamics and kinetics is studied, and the desulfurization mechanism of reaction/adsorption intergration is elucidated at a molecular level. In short, TiO2@CuO/C microsphere prepared in this work having core-shell architecture will possess excellent adsorption performance and stability, and it will be of guiding significance to the materials applied in ultra-deep desulfurization of diesel.
液体燃料中含硫化合物所带来的环境污染问题备受关注,吸附脱硫技术能够超深度去除柴油中的噻吩类硫化物,但存在吸附容量低和吸附选择性差等问题。本项目拟设计合成一种核-壳结构的TiO2@CuO/C微球,其以TiO2为壳,以铜基MOFs衍生的多孔CuO/C为核,“壳”对噻吩类硫化物进行光催化脱硫反应,“核”对产物亚砜/砜类进行吸附分离,从而构建催化反应和吸附分离的耦合体系。本项目通过合成TiO2@CuO/C微球,研究反应条件对核-壳结构的影响;探索核-壳结构形态、尺寸和孔结构的调控规律,借助多种表征手段来研究核-壳结构的形成机制;以噻吩硫为模型油,研究该核-壳微球的脱硫率、吸附容量、吸附选择性、使用寿命和再生性能等;结合脱硫热力学和脱硫动力学研究,从分子层面阐释其一步实现反应/吸附的耦合脱硫机理。本项目拟构建的核-壳型微球将具有优异的吸附性能和稳定性,这对柴油脱硫材料的应用具有重要的指导意义。
液体燃料中含硫化合物所带来的环境污染问题备受关注,吸附脱硫技术能够超深度去除柴油中的噻吩类硫化物,但存在吸附容量低和吸附选择性差等问题。本项目设计合成了一种核-壳结构的TiO2@Cu-BTC微球,其以TiO2为壳,以铜基MOFs——Cu-BTC为核,“壳”对噻吩类硫化物进行光催化氧化反应,“核”对反应产物亚砜/砜类进行吸附分离,从而构建催化反应和吸附分离的耦合体系。.本项目通过合成TiO2@Cu-BTC微球,研究了反应条件对核-壳结构的影响,探索了核-壳结构形态、尺寸和孔结构的调控规律,借助多种表征手段来研究核-壳结构的形成机制;结果发现,对于制备均一的核壳结构TiO2@Cu-BTC微球,氨水在控制反应速率方面起到非常重要的作用,可以通过调节氨水的加入量来调控Cu-BTC表面的TiO2形态和数量,即调节壳层的厚度;此外,TiO2的加入,促进了Cu2+的还原和Ti2+的氧化,Ti/O和Cu之间发生了电子转移,产生了显著的相互作用。本项目以苯并噻吩(BT)和二苯并噻吩(DBT)为模型油,当反应20min后,BT脱硫率达86%,DBT脱硫率达96%,脱硫量分别达到59.39mg/g和63.76mg/g,模型油中BT和DBT的硫含量也分别降至140和47ppmw;相比Cu-BTC的吸附脱硫,TiO2@Cu-BTC的吸附-催化耦合脱硫效率分别提高了4.6和6.5倍。这说明在脱硫过程中,紫外光辐射促进了BT和DBT的氧化反应,结果噻吩硫被TiO2壳层催化氧化变成了相应的砜类化合物,同时,由于极性差异,这些氧化产物被Cu-BTC核牢牢吸附,而实现了原料和产物的同步分离,减少了后续分离产物的操作;由于TiO2和Cu-BTC的协同作用,使TiO2@Cu-BTC微球具有较高的脱硫效率,能够在短时间内实现快速、深度脱硫。.本项目构建的TiO2@Cu-BTC核-壳型微球具有优异的脱硫性能和稳定性,这对柴油脱硫材料的应用具有重要的指导意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
circRNA_5303通过miR-138-5p调控Smad4参与钙化性主动脉瓣膜病变的分子机制研究
新型功能核壳型聚合物微球的合成和性能研究
核-壳型纳米级微球的分子设计及润滑机理研究
亲水型核壳共价有机框架纳米孔微球的精准构筑及对低分子肝素分离分析研究
多层核壳型聚合物微球及带有移动内核的功能性聚合物微球的合成