The photocatalytic performance and capability of electrical energy storage for transition metal oxides (TMOs) are closely associated with their morphologies such as size, thickness and exposed facets. Graphene-based TMOs display enhanced properties due to the prolonged lifetime of photo carries, and accelerated electrons transfer rate. Thus, morphological control of TMOs on graphene is crucial for the optimization of their performance, while it is unachievable if no inductive agent is employed. In this project, we are aimed to propose a new idea of growing TMOs on graphene and controlling the morphologies by using polymers as templates. First, polymers are combined with graphene via covalent grafted orππconjugation, to investigate, from the molecular level, the influence of spatial orientation of polymers on nucleation, growth and crystallization of TMOs. Intensive studies are performed to interpret the correlation between combination mode of polymers with TMOs and their physicochemical properties (functional groups, isoelectric point and geometric size). Second, the new synthetic method of low dimensional TMOs (ulatrathin nanosheets and nanowires, quantum dots) is focused for investigation of the effect of specific area and quantum effects on the corresponding performance. Finally, photocatalysis or capacitance measurements are carried out to estimate the properties of the hybrids, and eventually find the relationship between polymers, TMOs morphologies, and the hybrids’ bandgap struchture and conductivity.
过渡金属氧化物(TMOs)的形貌(颗粒尺寸、厚度和露晶面等)与性能(光催化、电储能性能)密切相关。石墨烯与TMOs复合可提高载流子的寿命,促进电荷的转移和传输。因此,实现石墨烯上TMOs形貌的调控,对提高材料性能至关重要,而二者直接复合难以实现形貌的调控。本项目提出以石墨烯片层作为TMOs的生长平台,通过高分子链的柔韧性、取向性,实现TMOs形貌调控的思路。首先,从分子层面上,研究高分子与石墨烯的结合方式和空间取向在诱导TMOs成核、结晶和生长过程中的作用;深入研究高分子与无机材料结合方式与其化学(基团,等电点)和物理(几何尺寸)特性的相关性;其次,重点考察低维形貌TMOs(二维超薄纳米片,一维超细纳米线等)的合成机制,以考察量子效应对性能的影响;最后,通过考察复合物光催化、电储能性能,阐述TMOs形貌、高分子修饰程度以及多异质结的构建,与复合物能带结构、电容性能的相关性。
过渡金属氧化物(TMOs)的形貌(颗粒尺寸、厚度和露晶面等)与性能(光催化、电 储能性能)密切相关。石墨烯与TMOs复合可提高载流子的寿命,促进电荷的转移和传输。 因此,实现石墨烯上TMOs形貌的调控,对提高材料性能至关重要,而二者直接复合难以实现形貌的调控。本项目研究了以石墨烯片层作为TMOs的生长平台,调控TiO2的形貌并研究其形貌对光催化和电性能的影响;深入研究了高分子与无机材料结合方式与其化学(基团)和物理(几何尺寸)特性的相关性;重点考察低维形貌TMOs(二维超薄纳米片,一维超细纳米线等)的合成机制,以考察量子效应对性能的影响;最后,通过考察复合物光催化、电储能性能,阐述TMOs形貌、高分子修饰程度以及多异质结的构建,与复合物能带结构、电性能的相关性。最后,本项目也对过渡金属离子交联的石墨烯,天然高分子多孔材料的电传感性能做了拓展性的研究,并取得了一定的进展。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
三级硅基填料的构筑及其对牙科复合树脂性能的影响
氧空位过渡金属氧化物-石墨烯泡沫复合电极材料的结构调控与储能机理研究
炭胶囊化中空过渡金属氧化物/石墨烯纳米复合材料的制备及其电化学储能性能研究
过渡金属衬底上类石墨烯硼单层CVD生长机制研究
异质原子掺杂调控石墨烯纳米带限域过渡金属氧化物负极材料的储钠性能及机理研究