Scheduling and optimizing bus schedule can ease traffic congestion, improve the capability of serving people, and respond to national policy of energy conservation and emission reduction. Facing to the strongly influence relationship between bus operation and normal vehicle running, analyze the defects of classic schedule method in the aspect of scheduling veracity, opportunity judegment and effectivity for schedule optimization. Under the connectted vehicle environment, this study will explore the travelling characteristics and laws of buses via communication environment from vehicle network at first. On a basis of schedule theory, this project will develop the bus scheduling model and design high-efficieny intelligent algorithms to solve the model. Bus arrival time will be predictted by using connectted vehicle, and the implement of opportunity judgment method in the bus scheduling will be researched. Bus scheduling mechanism fit for the connectted vehicle environment should be established simultaneously. Eventually, by constructing bus operation simulation platform, evaluate the validation of bus schedule model and algorithm under connectted vehilce environment. The expected results can not only provide models for intelligent management and control for macroscopic bus fleet as well as microscopic individual bus, but also become the basis for the deepening of theoretical system of connectted vehicle.
编制与优化公交车辆行车计划以指导公交运营调度,能够缓解交通拥堵,提高民生服务水平,响应国家节能减排政策。面向我国城市公交与普通车辆在运行时关联紧密的特点,分析以往行车计划编制方法在编制的准确性、优化的时机判断、优化的有效性等方面存在的不足,本研究拟在车联网环境下,首先探索车联网通信环境下公交车辆的运行特征及规律,基于排序理论,建立公交车辆行车计划编制模型,并设计高性能智能模型求解算法。利用车联网通讯条件,预测车辆到站时间,研究在新环境下优化公交车辆行车计划的时机判断方法。与此同时,构建适合车联网环境的公交车辆行车计划优化选择模型。最后构建公交运营仿真实验平台,评价车联网环境下公交车辆调度模型及算法的效果。预期成果不仅为宏观公交车队和微观公交车辆的智能管理控制提供模型支持,而且为车联网理论体系的深化提供技术支撑。
项目以提升公交运营调度智能化水平、提高城市公交吸引力、缓解交通拥堵、响应国家节能减排号召为研究背景,基于车联网技术背景,立足车联网环境下的常规公交车辆行车计划智能化编制及优化方法研究的总体目标,以常规公交车辆行车计划编制及优化为研究对象,研究行车计划智能化编制及优化方法。分析了车联网环境下公交车辆无线通信的通信范围和连通性、公交车辆运行轨迹、特征及规律,结合从部分城市(美国威斯康星州麦迪逊、中国上海、南京、常州市、四川自贡市等)获得的公交实际数据,建立了基于排序理论的车联网环境下考虑续航时间约束、维护时间约束、不同匹配约束等条件下的公交车辆行车计划编制模型;并基于车辆运行特征分析,建立了车辆到站时间预测模型、行车计划优化时间窗模型、优化时机判断模型和行车计划优化选择模型;形成基于排序理论的车联网环境下公交车辆行车计划编制及优化的理论与方法,并利用仿真平台针对部分公交线网公交车辆行车计划编制及优化进行相应了模型与算法的验证评价。研究成果不仅为宏观公交车队和微观公交车辆的智能管理控制提供模型支持,且为当前和不远的将来处于国际前沿研究的智能网联汽车、车路协同与自动驾驶等方面的研究提供了城市公交车辆运营调度方面的理论参考与应用借鉴。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
物联网中区块链技术的应用与挑战
一种改进的多目标正余弦优化算法
多源数据驱动CNN-GRU模型的公交客流量分类预测
基于混合优化方法的大口径主镜设计
车联网资源优化调度与车辆移动优化方法
车联网环境下多意图跟踪的车辆碰撞预警方法研究
异构车联网环境下紧急消息广播方法研究
轮乘制下铁路客运专线乘务计划优化编制理论和方法