In recent years, China's port construction, offshore oil extraction and a large number of maritime civil and military facilities construction projects are increasing. Among all these projects, underwater blasting plays a significant role. Emulsion explosives are the most commonly used industrial explosives in underwater blasting. However, emulsified explosives are obviously affected by deep water pressure in terms of static pressure Desensitization.Although there are extensive research on emulsion desensitization, most of them confinedto dynamic pressure desensitization. Nevertheless, there are only couples of research on static pressure desensitization which is another significant aspect of pressure desensitization by emulsion explosive. Since emulsion explosive has well resilience property under static pressure, the research static pressure desensitization must be under deep water. This is a big challenge for research on static pressure desensitization. Based on research on effect factors for static pressure desensitization, this paper aims at reducing the sensitive degree and focuses on desensitization disciplines of different types of emulsions and their diversification micro-structures, which are helpful for developing methods for reducing emulsion sensitive. Through under water explosion experiments, theoretical analysis, theoretical analysis, characters of static pressure desensitization could be quantitatively expressed. By observing structural changes under static pressure emulsion explosives, summering disciples of static pressure desensitization, this is paper clarifies the mechanism of static pressure desensitization, and form desensitization techniques. The project scientifically elaborates the process of static pressure desensitization. Meanwhile, this research solves the basic problems for emulsion static pressure desensitization. This provides a technique support for development of emulsion explosives About underwater blasting and deep hole blasting.
近年来,我国港口建设、海洋石油开采及大量海上民用、军事设施建设项目日益增多,在这些工程项目中,水下爆破无不发挥着重要的作用。乳化炸药是水下爆破中最常用的工业炸药,而乳化炸药受深水压力作用出现明显的静压减敏现象。虽然国内外科研人员对乳化炸药压力减敏进行了大量研究,但大都局限在动压减敏的研究上,而对乳化炸药静压减敏研究较少。本项目拟利用自行设计的可调节压力的微型爆炸装置结合水下爆炸测试系统进行实验研究,并利用改造后可调节压力的光学显微镜进行微观观测。从研究乳化炸药静压减敏的因素入手,以降低其减敏程度为着眼点,重点研究乳化炸药静压减敏规律及其微观结构变化规律,降低减敏程度的方法。本项目将科学阐述深水压力下乳化炸药静压减敏这一过程,拟解决深水压力下乳化炸药静压减敏基础问题,为研制用于水下爆破、深孔爆破的具有良好抗静压减敏的乳化炸药提供技术支撑。
乳化炸药作为含水工业炸药,其优良的抗水性能使其被广泛的应用于水下爆破作业中,然而在水下爆破作业时,乳化炸药会受到静水压力的作用出现静压减敏现象,导致爆炸时炸药的各项性能下降。基于上述原因本项目以乳化炸药为研究对象,以乳化炸药受静压减敏为研究背景,课题组设计并建立了一套可改变静水压力大小的水下爆炸测试系统来研究乳化炸药受静压减敏。通过改变水面压缩空气压力的大小来模拟深水装药环境。利用压力传感器来测试炸药爆炸时的冲击波峰值压力及气泡脉动周期,并通过比冲击波能、比气泡能、总能量的来表征乳化炸药受静压减敏情况。主要开展了四项实验:不同静压下敏化剂的影响因素对乳化炸药静压减敏的影响;不同静压下乳化剂的影响因素对对乳化炸药静压减敏的影响;不同静压下密度的变化及无复原性影响下的静压微观变化;数值模拟与工程试验对比,系统的研究了乳化炸药的静压减敏性能。主要研究结论如下:使用单一敏化剂时,空心玻璃微球由于其的物理性能而具备最好的抗压性能,且含量为3%时,乳化炸药的能量释放最佳;使用复合敏化剂敏化时,其抗压性能的优劣顺序为空心玻璃微球+珍珠岩敏化、空心玻璃微球+亚硝酸钠敏化、珍珠岩+亚硝酸钠敏化的乳化炸药;乳化剂的含量为3%时炸药抗压性能及经济效益最佳,通过对比研究发现,乳化剂含量相同时不同炸药抗压性能的优劣顺序为:span-80+T155乳化剂>T155乳化剂>span-80乳化剂乳化的乳化炸药;随着静水压力增大乳化炸药密度从初始的1.228g/cm3增加到1.326g/cm3,超出了乳化炸药爆轰时炸药密度;敏化气泡的微观表征为随着压力增大化学敏化气泡受压尺寸减小或逃逸,物理敏化气泡受压破裂,致使乳胶基质占据更多的空间,所以受压后乳化炸药密度增大。通过改变炸药的能量参数得到模拟效果与模型爆破效果具有很好的一致性,验证了在水下爆破中水深对乳化炸药的减敏影响。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
乳化炸药动态压力下减敏机理的研究
乳化炸药及乳化粉状炸药燃烧转爆轰研究
储氢型动态敏化复合乳化炸药爆轰机理和安全性研究
炸药高压燃烧实验技术及其燃速-压力特性研究