Anion exchange membrane fuel cell (AEMFC) has attracted many research interests due to its low fuel crossover and low cost of catalyst. In view of the low ionic conductivity and poor alkaline stability of anion exchange membrane (AEM), this project plans to design and synthesize anion exchange membrane containing 1,2,3-triazolium groups, which have high thermal and alkaline stability. Through the high-efficiency "click chemistry" reaction between azide-modified Poly(2,6-dimethyl-phenylene oxide) (PPO-azide) and alkyne and alkylation, anion exchange membrane based on 1,2,3-triazolium groups is synthesized. Because of high selectivity of “click chemistry”, the chemical structure of 1,2,3-triazolium groups can be rationally designed and controlled. We study the mechanism of degradation of 1,2,3-triazolium groups under alkaline condition to make it clear that how substituent groups affect the alkaline stability of anion exchange membrane containing 1,2,3-triazolium groups. Meanwhile, functional AEMs can be obtained through the reaction of functional alkyne and PPO-azide, which promote the formation of phase separation structure and increase the ionic conductivity of AEMs. Under the condition of heating, the unreacted azide groups make the membrane crosslinked, controlling the overall performance of AEMs. Therefore, this project provides a new efficient method for the preparation of anion exchange membrane, and high-performance anion exchange membranes with independent intellectual property rights are expected to be obtained.
阴离子交换膜燃料电池由于低的燃料透过率、可使用非贵金属催化剂等优点,近年来备受关注。针对目前阴离子交换膜普遍存在的离子传导率低和碱性稳定性较差的问题,本项目以热稳定性和碱性稳定性优异的1,2,3-三氮唑盐为功能基团,采用甲基叠氮化聚苯醚和炔基化合物为原料,通过高效的“点击化学”和烷基化反应,设计、制备1,2,3-三氮唑盐阴离子交换膜。由于“点击化学”反应的高选择性,可以实现三氮唑盐结构的合理设计和调控。通过研究三氮唑盐基团在碱性条件下的降解机理,探明取代基结构与膜的碱性稳定性的关系;通过与功能化的炔基化合物反应,可以方便地得到功能化的阴离子交换膜,促进亲水-疏水有效相分离,提高膜的离子传导率;未参与“点击化学”的叠氮基团可作为交联剂,能够实现膜材料的交联,有效地调控膜综合性能。本项目为阴离子交换膜的制备提供了新的、高效便捷的方法,并有望获得具有自主知识产权的、综合性能优异的阴离子交换膜。
碱性阴离子交换膜燃料电池由于能够使用廉价的催化剂,近年来备受关注。本项目针对阴离子交换膜普遍存在的离子传导率低和碱性稳定性差的问题,利用高效的“点击化学”反应,分别开展了1,2,3-三氮唑盐和季铵盐阴离子交换膜方面的工作:1)通过1,2,3-三氮唑盐小分子模型化合物的研究,阐明1,2,3-三氮唑盐在碱性条件下的降解机理,并提出进一步提高碱性稳定性的合成策略;2)成功建立1,2,3-三氮唑盐聚合物的合成方法,实现有效地调控聚合物的化学组成和结构;通过溶液浇筑,制备1,2,3-三氮唑盐阴离子交换膜,研究膜的化学结构与性能之间的关系,得到高电导率的1,2,3-三氮唑盐阴离子交换膜(80 ℃下,碳酸氢根离子电导率达到31.3 mS/cm),并基于小分子稳定性研究,设计得到碱性稳定性提高的三氮唑盐阴离子交换膜;3)通过对比研究,发现三氮唑盐阴离子交换膜的碱性稳定性低于季铵盐型,因此,我们利用优化的“点击化学”反应条件,研究季铵盐型阴离子交换膜的化学结构-膜性能-燃料电池性能的关系,在膜内构筑利于离子传输的离子通道,得到高碱性稳定性、高电导率的膜材料。在本项目的支持下,已经在Energy Environ. Sci.,ACS Appl. Mater. Interfaces,Journal of Membrane Science等期刊发表论文8篇,并在《科学通报》上发表进展一篇,相关工作得到了国内外同行的广泛关注。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
氮氧化-1,2,3-三唑含能离子盐的设计合成与性能研究
氮杂卡宾催化合成1,2,3-三氮唑
基于膦酸基和1H-1,2,3-三唑基的酸碱两性高温质子交换膜的制备
基于咪唑盐的杂化阴离子交换膜的结构设计及性能研究