SiC-ZrB2 modified C/C composites (C/C-SiC-ZrB2) are promising candidates for key components as liner tube of fast-fire weapon barrel and piston of diesel engine with high-power density. The composite will be ablated by the high-frequency impacted flame at ultra high temperature cooperated with strong thermal shock and sand erosion in the course of using, while the surface temperature is much lower than the environment. The project is aimed at the failure mechanism of C/C composites in the conditions mentioned above. The C/C-SiC-ZrB2 will be prepared by chemical vapor infiltration combined precursor infiltration and pyrolysis. Testing under cyclic impact of oxyacetylene torch coupled corundum sand erosion on the self-developed device, the low-temperature ablation mechanism of the material in different loading and combustion environments, effect of SiC-ZrB2 distribution and microstructure and the surface metallization on the ablation will be mainly studied. And then the internal relations among parameters of ultra high temperature environment in unsteady state, microstructure of composite and ablation mechanism will be elucidated. Ablation model and optimization method of matrix should be finally obtained.
SiC-ZrB2改性C/C复合材料(C/C-SiC-ZrB2)有望用于速射武器身管内衬和高功率密度柴油机活塞等装备热端关重件,工作时超高温燃气以单次毫秒级短时加载、高频冲击且存在附壁燃烧等非正常焰流,形成材料表面平均温度远低于环境温度但剧烈震荡并伴随强烈粒子冲蚀的独特低温烧蚀环境。本项目针对改性C/C复合材料在上述工况中的失效机制尚不明确这一现状,通过化学气相渗透结合前驱体浸渍裂解法制备C/C-SiC-ZrB2,借助自研的氧乙炔燃气耦合刚玉砂冲蚀往复加载烧蚀测试装置,重点研究该材料在不同加载和燃烧环境中的低温烧蚀机理,探究SiC-ZrB2分布形态和微结构以及表面金属封填对烧蚀的影响规律与作用机制,以期阐明非稳态超高温环境参数、复合材料基体特性与材料烧蚀机理的内在联系,从而建立复合材料在非稳态超高温环境中的烧蚀模型,获得基体优化方法。
随着制备技术的成熟和性能的持续提升,C/C-SiC-ZrB2复合材料有望用于速射武器身管内衬和高功率密度柴油机活塞顶等兵器装备热端关重件,以解决其固有的烧蚀问题。针对超高温燃气高频往复冲击并伴随强烈粒子冲蚀的服役工况,研究了不同载荷谱条件下的烧蚀特性和陶瓷相结构、表面金属化的影响。发现单次冲击时长(50~0.2s)缩短、累积冲击次数(~2000次)增加时烧蚀率持续下降,烧蚀过程中材料表面温度峰值远低于燃气温度,但表面高发射率、低热导率结构单元在燃气冲击过程中会成为高温“热点”,其氧化和热震\冲刷剥离特性直接影响表面烧蚀产物的累积形态进而决定烧蚀性能;耦合冲蚀后复合材料烧蚀率显著增大,固态粒子对表面烧蚀产物和复合材料基材的冲击损伤主导了材料烧蚀。SiC-ZrB2微结构调控能够缓解“热点”附近的热失配从而一定程度上提高复合材料的抗烧蚀性能,而B的氧化物能够在“热点”烧蚀产物的烧结和铺展方面起到重要的积极作用。表面金属化尤其与C/C-SiC-ZrB2骨架形成互穿网络结构后复合材料的强度、热导、抗冲蚀性能等显著提升,烧蚀率随金属相熔点呈现出对服役环境更高的敏感性,在单次短时长和低温度燃气冲击方面具有更优的抗烧蚀能力。本项目重点探究了超高温燃气高频往复冲击环境中导致烧蚀的“热点”的形成机制及其调控方法,揭示了这一超高温环境中的低温烧蚀机理,为C/C-SiC-ZrB2复合材料针对性优化指明了方向。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
MSGD: A Novel Matrix Factorization Approach for Large-Scale Collaborative Filtering Recommender Systems on GPUs
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
C/C-ZrC-SiC复合材料的烧蚀性能及烧蚀机理研究
稀土改性C/C-ZrC-SiC复合材料的制备及烧蚀机理研究
LPCVD-HfC纳米线改性C/C复合材料的制备工艺规律及其抗烧蚀机理
Zr-Al(Si)-C改性C/SiC复合材料的强韧化机制与抗烧蚀机理