We propose a novel resonator optical voltage sensing and detection method with double light frequency-locking and cooperative control to solve the contradiction between high precision and miniaturization, the reliability and long-term temperature stability in the current smart grid applications. Firstly, we investigate the sensing principle of the novel resonator optical voltage sensor which is resonator sensitive voltage composed by signal crystal, enhanced Pockels effect through multiple transmission of light in the resonator. And, we will provide the design method and production process of lamellae crystal resonator with the symmetrical thermal distribution. Therefore, some difficulties like the application limited by the reliability of multiple discrete optical components and the sensing accuracy increased with the longer crystal in traditional voltage-sensing optical path are expected to be solved. Secondly, we will establish the quantitative relationship between key optical parameters (include double optical resonant frequency, modulator gain, and so on) and the system performance index to explore the limit sensitivity of the resonator voltage sensor, and put forward the multi-state synchronous modulation and demodulation method for the key optical parameters. Finally, we will study a cooperative control technique for key optical parameters which is detecting double optical resonant frequency by synchronous frequency-locking differencial method to compensate the temperature error, so that we can achieve high precision detection of the novel resonate AC and DC voltage sensors. The research of this project will provide a theoretical foundation and experimental basis for the high precision and miniaturization of optical voltage sensor, and also have an important practical value for improving the long-term temperature reliability and reliability of voltage measurement in the smart grid applications.
针对光学电压传感器目前在智能电网应用中的高精度与微型化矛盾、可靠性及长期温度稳定性难题,拟研究双路光锁频协同控制的新型谐振式光学电压传感及检测方法。首先,研究单晶体构成谐振腔敏感电压、腔内光多次传输增大Pockels效应的新型谐振式电压传感机理,给出热应力场对称分布的薄片式晶体谐振腔设计方法与制作工艺,旨在解决传统电压传感光路中多个分立光学元件的可靠性制约其应用、敏感精度越高晶体越长等难题。其次,定量分析两路光谐振频率、调制器增益等关键光学参数与系统性能指标的关系以探索该电压传感器的极限灵敏度,并提出多状态同步调制解调各光学参数的方法。最后,研究同步锁频差分检测双路光谐振频率抵消温度误差的关键光学参数协同控制技术,实现新型谐振式交、直流电压传感器的高精度检测。本项目研究将为光学电压传感器高精度与微型化的实现奠定理论基础,对于提高智能电网中电压测量的长期温度稳定性与可靠性具有重要的应用价值。
针对光学电压传感器目前在智能电网应用中高精度与微型化的矛盾、可靠性以及长期温度稳定性的问题,本项目提出了新型谐振式光学电压传感方案,并研究了双路光锁频协同控制的新型信号检测方法,不仅可为光学电压传感器直流测量的长期温度一致稳定性及可靠性难题提供突破性新手段,还可为交、直流光学电压传感器同时实现高精度与微型化奠定理论依据和技术基础。.首先,系统性地研究了谐振式光学电压传感器的谐振机理,推导了光学晶体谐振腔的传递函数,建立了表征晶体谐振腔清晰度、透射率等性能指标的数学仿真模型,并确定了关键光学参数对光学电压传感器灵敏度的影响。进而,考虑温度场、应力场、电场等多物理场分析了谐振式光学电压传感器检测精度的影响机理,通过有限元分析的方法建立了谐振式光学电压传感器的误差模型,提出了热应力、机械应力等对称分布的晶体谐振腔结构设计方法。然后,设计了新型谐振式光学电压传感器差分检测的闭环控制回路及硬件电路,并研究了基于四态波调制解调技术的关键参数协同控制软件,完成了闭环控制算法的设计及软件的调试。最后,完成了该新型谐振式光学电压传感器试验样机的研制,并对系统进行了试验验证。试验表明所测得的光学晶体谐振腔的清晰度可以使得该新型谐振式光学电压传感器达到较高的极限灵敏度,与理论分析一致。此外,通过对谐振式光学电压传感器样机系统进行多组输入电压值的测量,试验测试结果表明,所设计的该新型谐振式光学电压传感器样机系统的输出与外加电压之间具有良好的线性关系以及在400V至1000V范围内其相对测量误差小于10%,试验验证了所提出的新型谐振式光学电压传感方案的可行性及正确性。本项目在本领域重要期刊上发表论文共11篇,其中 SCI 收录 8篇(7篇 1 区SCI期刊),成果转让国家发明专利8项,新增授权发明专利3项,申请发明专利1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
路基土水分传感器室内标定方法与影响因素分析
涡度相关技术及其在陆地生态系统通量研究中的应用
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
基于多参数温变控制的闭合光路的光学电压传感方法研究
差分微小型双谐振光声痕量气体定量检测方法研究
基于光生相敏的光纤双波长共光路高灵敏气体传感方法研究
微机械谐振子激励检测方法及阻尼控制研究