Once applied in the environment, biochars may be degraded biologically or chemically, and thus their quantities and properties altered accordingly. However, no techenique is currently available to separete and thus characterize biochars after they are applied in soils. Thus biochars are treated as a static component after their applications, which brougtht improper avaluation of biochar functions and turnover times over their life time in the environment. Extended work is needed to investigate biochar properties, especially their dynamics, in complex environmental matrix. Biomarkers have been widely used in carbon cycling, and played an important role in understanding carbon sources, turnover, and stabilization. Benzene polycarboxylic acids (BPCAs) are used as biomarkers for black carbons. Considering the similar chemical properties between black carbon and biochars, BPCAs could be used as biomarkers for biochars. Incorporating BPCA biomarker technique in biochar research will greatly improve our ability in describing biochar property change in the environment. This study includes both laboratory simulation and field study. BPCA molecular information in relation to biochar prodcution and properties will be firstly investigated. Different types of biomass as well as biomass model materials (such as lignin and cellulose) will be collected, and biochars will be produced under different temperatures. The obtained biochars will be chemically or biologically degraded in the simulation experiments. All the materials are subject to the analysis of BPCAs. Importantly, all the samples will be analyzed for 13C abundance, and the relationship between biochar pyrolysis temperature or feedstock properties and BPCA molecular specific 13C information will be established. All the results obtained above will be applied in the field study. Soil samples from intense human activity area will be collected and analyzed. These areas include agricultural and living/industry districts. Biochars in all these soil samples will be quantified using thermal oxidation method. The origination, degradation pathway, and stabilization of biochars will be analyzed and compared. BPCA information will also be compared before and after removing mineral compositions from soil particles. Consequently, the interactions between biochar and mineral particles can be revealed. This comparison will provide valuable information in clarifying the interaction mechanisms between biochars and mineral particles, as well as the role of mineral particles in biochar stabilization. This line of study will unfold a new research strategy in dynamically evaluate biochar properties and functions in complex matrix after being applied in the environment.
生物炭进入环境后,在生物和非生物过程中会发生不同程度的降解,其质量和性质随时间而变化。遗憾的是,目前没有很好的方法将生物炭从土壤中分离出来,从而动态描述其性质和环境效应。生物标记物技术在理解有机碳来源和行为领域做出了重要的贡献,苯多羧酸(BPCAs)生物标记物方法的引入,可能为理解生物炭的生命周期及其性质变化提供重要的技术手段。本研究拟以不同生物质制备的生物炭为研究对象,通过模拟实验构建BPCAs分子组成及13C稳定同位素信息在生物炭制备和老化过程中的变化特征,并将其应用于环境样品中,描述生物炭施用后的相对含量和性质变化,对天然土壤中生物炭的来源、降解、稳定等过程,特别是通过对土壤洗矿前后BPCA含量、分布特征以及单分子13C丰度的信息比较,理解生物炭与土壤无机矿物之间的相互作用机制,探究有机-无机复合体在生物炭稳定中的功效。本研究将为客观、动态评价生物炭在环境中的行为和功效提供新的思路。
生物炭进入环境后,在生物和非生物过程中会发生不同程度的降解,其质量和性质随时间而变化。遗憾的是,目前没有很好的方法将生物炭从土壤中分离出来,从而动态描述其性质和环境效应。生物标记物技术在理解有机碳来源和行为领域做出了重要的贡献,苯多羧酸(BPCAs)生物标记物方法的引入,为理解生物炭的生命周期及其性质变化提供重要的技术手段。本研究以不同生物质制备的生物炭为研究对象,通过模拟实验构建BPCAs分子组成及13C稳定同位素信息在生物炭制备和老化过程中的变化特征,并将其应用于环境样品中,描述生物炭施用后的相对含量和性质变化,对天然土壤中生物炭的来源、降解、稳定等过程,特别是通过对土壤洗矿前后BPCA含量、分布特征以及单分子13C丰度的信息比较,理解生物炭与土壤无机矿物之间的相互作用机制,探究有机-无机复合体在生物炭稳定中的功效。结果发现:(1)BPCAs标志物可描述高缩合度有机质特性,而非仅仅火成炭黑特性;(2)BPCAs分子标志物法可以描述土壤体系中生物炭的物理化学特性和吸附特性;(3)生物炭虽然稳定,但是进入环境后在生物和非生物作用下也会发生降解和老化,而BPCAs分子标志物可描述老化前后生物炭的性质;(4)利用BPCA单分子13C丰度可以构建生物炭与无机矿物之间的相互作用关系;(5)有机-无机复合体对类炭黑结构的凝聚态有机质的BPCAs有重要保护作用。本研究为客观、动态评价生物炭及土壤中炭黑在环境中的行为和功效提供了新的思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
生物炭表面官能化改性及对土壤中多环麝香类污染物迁移的影响机制
稻田土壤生物质炭生物与非生物氧化特性及其机理研究
生物质炭的氧化还原特性对稻田土壤中砷迁移转化的影响机制
生物炭对不同土壤水力特性、水肥利用效率影响及耦合响应机理研究