Facing the significant demand coming from deep geological drilling and unconventional resources/energy exploration and development, this project studies the intelligent control of drilling process for complex geological environment, covering the issues on theoretical research, technology development, and engineering practice. To solve the description problem of the complex geological environment, a real-time multi-field-coupled modeling method for the formation characteristics field is studied, which combines the formation drillability and the three formation pressures to establish the three-dimensional spatial model of the formation characteristics parameters. Based on such model, the drilling trajectory is optimized, in order to obtain the optimal drilling trajectory and the drilling control constraints simultaneously. Then, with the complex coupling control loops taken accounted, the project investigates the intelligent control method of drilling process to enhance drilling control efficiency, as the safety of drilling process is guaranteed. To realize Internet-of-things based remote monitoring and abnormal state warning, a drilling process state monitoring technology with three-dimensional virtual visualization is developed. The project develops a network-based intelligent control system for drilling process, as well as the simulation and experiment system to verify correctness and validity of the theories and technologies got from the study. Finally, the intelligent control system is applied in typical geological drilling engineering..As the final result, a series of new theories and technologies are generated, which are integrated together to construct a new solution for deep complex geological drilling process control, so as to take the commanding height of advanced control technology for drilling process. And it is positive to promote the subject development of the control science and engineering, as well as the geological resources and geological engineering. In one word, the project is of great scientific significance and has broad application prospects.
本项目面向深部地质钻探和非常规资源能源勘探开采的重大需求,研究复杂地质钻进过程智能控制的理论技术及工程应用。针对复杂地质环境难以描述的难题,研究融合地层可钻性和地层三压力的多场耦合实时地层特征参数场建模方法,建立三维空间地层特征参数场模型,在此基础上进行钻进轨迹优化设计,获得最优钻进轨迹和钻进控制约束条件;研究面向复杂耦合回路的钻进过程智能控制方法,在保障钻进过程安全的同时,实现钻进过程的高效控制;研究基于三维虚拟可视化的钻进过程状态监测技术,实现基于物联网的钻进过程远程监测和异常状态预警;开发基于网络化架构的钻进过程智能控制系统,建立仿真与实验系统验证理论技术的正确性和有效性,在典型地质钻进工程中进行实际应用。.通过研究,为深部复杂地质钻进过程控制提供新的理论技术和解决方案,抢占钻进过程先进控制技术制高点,促进控制科学与工程和地质资源与地质工程学科的发展,具有重要科学意义和广阔应用前景。
本项目面向深部地质钻探和非常规资源能源勘探开发的重大需求,研究复杂地质钻进过程智能控制的理论技术及工程应用。在地质环境建模、钻进轨迹优化、钻进过程状态监测与智能控制、钻进过程智能控制系统开发方面取得突破性成果。项目的主要研究内容与代表性成果如下:.(1)提出区域三维地层特征参数场建模方法,解决多源、低价值密度和不完备信息条件下的复杂地质环境建模问题,实现对区域地质环境的准确刻画。.(2)提出基于三维地层特征参数场的钻进轨迹优化设计方法,解决轨迹优化设计的多样化、非连续与非参数的多目标优化问题,实现复杂地质环境下的轨迹优化设计。.(3)提出复杂地质钻进效率优化策略、考虑系统间耦合关系的协调优化策略和钻进过程智能控制方法,解决钻进过程控制的回路耦合与多样化扰动的问题,实现钻进过程的安全高效。.(4)提出基于云平台和三维虚拟仿真的钻进过程状态监测技术,实现数据价值密度低、安全性约束强等条件下的综合监测。.(5)研制钻进过程智能控制系统,在工程应用中实现直井方位角弯强≤0.5°/100m、斜角弯强≤0.05°/100m,事故预报率达100%,检测符合率达95%。.研究成果发表期刊论文35篇,会议论文32篇,出版著作2部,其中1篇论文荣获《Control Engineering Practice》期刊亮点论文;申请国家发明专利15项(授权8项),登记软件著作权8件;培养研究生19名。研发的钻进过程智能控制系统,支撑“5000米智能地质钻探关键技术装备研发成功并应用”成果荣获2021年度中国地质科技十大进展;在湖北省襄阳市南漳县九集地热资源预可行性勘查项目、辽东/胶东重要成矿区带深部探测3000米科学钻探项目和河北保定5000米地热地质勘查参数井(JZ-04井)项目进行了工程应用,取得了显著经济社会效益。.研究成果为深部复杂地质钻进过程控制提供了新的理论技术和解决方案,促进了控制科学与工程以及地质资源与地质工程学科发展,具有重要科学意义和广阔应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
复杂工业过程智能解耦控制理论和方法研究
复杂系统的智能预测控制
基于锚固孔钻进参数的含煤地层智能识别研究
面向智能制造的复杂多向模锻过程空间多轴联动协调控制