Graphene has been widely used as functional reinforcing nanofillers for the fabrication of high-performance nanocomposites due to its unique two-dimensional nanostructures and excellent physical properties. In this project, modifications and controllable assemblies of graphene nanosheets, as well as the optimizations for the constructing routes of introducing graphene into elastomeric composites with hierarchical nanostructures are proposed. Moreover, the uniform immobilizations and (or) patterning of graphene on the surface of elastomeric materials will be tailored when improved interfacial interactions between graphene and elastomeric matrix are expected to be simultaneously achieved. The relationship of fabrication, structure and physical properties of graphene/elastomer composites will be thoroughly explored for obtaining high-performance and multi-functional elastomer-based composites. Due to the presence of graphene, elastomers will be endowed with good conductivities and expected as ideal substrates for supporting electroactive materials, by keeping with their intrinsic advantages such as good impact resilience, high deformation recovery rate (including deformation conditions such as bending, compression, tension and winding), easy processing, which aim at expanding the applications of elastomeric materials as stretchable and elastic substrates in energy storage and conversion devices. In addition, the relationship between hybridization, composite compositions, surface/interface properties of the as-prepared graphene/elastomer composites and the final device performances will be intensely explored. Through the implementation of this project, it is expected to provide useful database for constructing high-performance and multi-functional elastomer-based composites, as well as the design and development of a new type of substrate materials for new energy devices.
石墨烯作为具有独特二维结构和优异物理性能的新型纳米碳材料,被广泛作为功能性填料用于制备高性能纳米复合材料。本课题拟对石墨烯进行功能化修饰和可控组装,优化将其用于制备多级结构高分子复合材料的工艺路线,在实现石墨烯与基体间的强界面相互作用的同时,调控石墨烯在弹性体表面的均匀负载和(或)图案化排列,建立和揭示石墨烯/弹性体复合材料的制备-结构-性能之间的关系规律,在保持弹性体材料自身高抗冲击性、高形变回复率(包括弯曲、压缩、拉伸、卷绕等形变条件)、易加工成型等优异性能的同时,赋予弹性体复合材料良好的导电性能及作为柔性衬底材料负载电化学活性物质的特性,系统研究复合材料组成和表界面性质等因素对新能源器件性能的影响规律,拓展弹性体复合材料作为可伸缩柔性衬底材料在新能源领域中的应用。期望通过本项目的实施,为构筑高性能和多功能弹性体复合材料以及设计研发用于能源器件领域的新型衬底材料奠定理论和实践基础。
二维石墨烯比表面积高、自身易团聚等特征是限制其与弹性体基体进行纳米复合构筑高性能及多功能性一体化复合材料的根本原因。鉴于此,本项目从石墨烯的功能化修饰和可控组装出发,成功制备了基于石墨烯的具有新型多级结构的碳纳米杂化颗粒。该碳纳米杂化颗粒充分利用了不同维度碳纳米基元材料自身的优异特性,通过协同作用杂化形成了具有多级结构的石墨烯基杂化颗粒,解决了石墨烯材料易于团聚的难题,实现了其在弹性体基体材料表面的均匀分散及强界面相互作用,并探索和拓展了其在新能源领域的潜在应用。主要研究成果包括:(1)实现了基于石墨烯纳米基元可控构筑碳纳米杂化颗粒的新途径,为实现其在弹性体表面的均匀负载和与基体间的强界面相互作用提供了保障;(2)发展了绿色环保制备石墨烯-碳纳米管复合气凝胶材料的新方法,为实现多级结构石墨烯及其杂化颗粒的可控构筑提供了新思路;(3)实现了石墨烯等碳纳米材料在弹性密胺泡沫骨架及氨纶织物纤维表面的可控组装,获得了可压缩/可拉伸的柔性弹性体复合材料,并拓展了其在能量存储和应力传感等方面的应用。通过本项目的实施,丰富和发展了基于石墨烯及其杂化材料的多级结构构筑与功能化理论,建立了石墨烯及其弹性体复合材料结构与性能之间的关系规律,为其他新型具有多级结构的石墨烯/聚合物复合材料的设计和制备提供了理论与实验基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
具有多级孔道结构的石墨烯基有序介孔碳复合材料的制备及性能研究
多级结构石墨烯-羟基磷灰石/聚乳酸纳米复合材料制备、性能及应用研究
多级孔结构石墨烯基复合材料的制备及其在氧气还原中的应用
多级结构石墨烯基复合吸波材料的构筑及性能增强机制