The self-assembly and tune of supramolecular polymers have attracted considerable interest from researchers working in polymer chemistry and organic chemistry. Supramolecular polymer can be constructed by single non-covalent interaction or the combination of multiple non-covalent interactions by an ‘‘orthogonal” self-assembly method. To date, thanks to the arduous efforts of supramolecular and macromolecular chemists, various supramolecular polymers constructed by “orthogonal” self-assembly have been reported. However, “orthogonal” self-assembly method has difficulty in further transforming the structures of supramolecular polymers due to their very noninterference. Comparatively, “competitive self-sorting” assembly be effective because it allows destruction of the original entities and reconstruction. To address the above issues, we propose a novel idea, the combination of “orthogonal” self-assembly and competitive “self-sorting” assembly polymerization methodology, to construct new supramolecular polymers and transform the structures of supramolecular polymers. This idea is described as follows: Firstly, a new supramolecular polymer is prepared by “orthogonal” self-assembly of pillar[6]arene-based host-guest interaction and metal ion coordination interaction. On this basis, the addition of a type of monomer, which possesses the competitive guest group and reconstruction group, disrupts the supramolecular polymers constructed by “orthogonal” self-assembly, accompanied by the reformation of a new supramolecular polymer. The backbones of the two supramolecular polymers both contain different non-covalent bonds and Se-Se dynamic covalent bond, which will endow multiple stimuli-responsiveness of supramolecular polymers. On the basis of the tunable structures and stimuli-responsiveness of supramolecular polymers, the size, morphology and fluorescence of supramolecular polymers can be effectively tuned. To summary, this project provides a new methodology of supramolecular polymerization, and is expected to provide application value in the preparation of porous membrane materials and fluorescent materials.
超分子聚合物的组装及调控近些年引起了学术界的广泛兴趣。超分子聚合物可以基于一种非共价键或多种非共价键以“正交”的方式来构筑。目前利用正交自组装法将多种非共价键引入到一个超分子聚合物体系中已有较多的研究,但正交自组装法由于它的“正交”特性在超分子聚合物组装后,聚合物结构的进一步转化方面存在困难。申请者从超分子聚合方法学入手,提出联合正交自组装法和竞争性自分类法两种聚合方法来实现超分子聚合物的组装、解组装、重构、结构转化。首先通过正交自组装法构筑出一种新型的金属配位柱[6]芳烃超分子聚合物,在此基础上再利用竞争性自分类组装法转化为另一种超分子聚合物。借助单体中的动态共价键二硒键和多种非共价键赋予两种超分子聚合物多重刺激响应功能,综合利用这些响应性及它们之间的协同效应实现对超分子聚合物的尺寸、形貌、荧光等调控。本项目在超分子聚合方法学方面提供了新思路,并有望在多孔膜、荧光材料等方面提供应用价值。
超分子聚合物的组装及调控近些年引起了学术界的广泛兴趣。虽然不同的超分子聚合物的构筑可以通过不同的聚合方法来实现,但仍存在合成聚合物过程较为繁琐,不同结构聚合物的结构转化缺乏深入研究等问题。基于此,本项目利用不同的聚合方法或联合多种聚合方法,通过多种超分子作用构筑了一系列结构可控的刺激响应性超分子聚合物,深入研究了超分子自组装体的结构参数、动态组装过程、结构转化,并将所构筑的超分子聚合物应用于发光材料、药物控制释放等领域。本项目取得的代表性成果包括:(1)基于正交自组装和竞争性自分类可控组装超分子聚合物及聚合物的结构转化;(2)基于可控自分类组装聚集诱导发光超分子聚合物及凝胶;(3)分级自组装驱动的超分子聚合物架构转化:从超分子聚合物到荧光材料;(4)基于多种非共价键的自分类组装构筑序列可控的超分子聚合物。通过本项目的研究,课题组迄今已在Macromolecules(1篇),Chemical Communications(1篇),Polymer Chemistry (2篇),Macromolecular Rapid Communications(1篇),Carbohydrate Polymers(1篇),Organic Chemistry Frontiers(1篇)等期刊上正式发表SCI论文8篇,培养出站博士后1名,硕士研究生3人(已毕业1人)。以上研究成果被J. Am. Chem. Soc., Chem. Soc. Rev., Macromolecules等国际著名SCI期刊正面引用和积极评价。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
结核性胸膜炎分子及生化免疫学诊断研究进展
正交自组装构筑超分子智能水凝胶及其调控
新型水相超分子聚合物自组装构筑
基于正交自组装的多金属氧簇杂化超分子聚合物及其功能研究
簇基超分子聚合物的构筑及其在聚合物基体中的组装改性研究