Keeping the nanoparticles cycle continuously and stably in the ammonia absorption refrigeration system is the key issue for the utilization of nano-refrigerant to improve the efficiency. Based on the previous researches on the influence of nanofluids on the absorption and generation process of ammonia absorption refrigeration system,this study will foucus on the practical problems such as dynamic stability and sustainability for system-wide application of nanofluids. This study mainly contains following items: (1)The dynamic stability and variation rule of ammonia water nanofluids will be investigated after undergoing the situation of alternate speed, temperature, pressure and concentration fields in the circulation system, which will lay a foundation for preparing suitable nanofluids with good dynamic stability.(2) The time-dependent physical properties of nanofluids and the reversibility of sedimentation and adsorption on the surface of the tubes of the system will be studied. And a time-dependent model on the physical properties of nanofluids will be established, which will also be used to back optimize the preparation process of nanofluids.(3)A suitable integrated dispersion method and device will be designed and its effect on performance of nanofluids and refrigeration system will be studied.This project will offer experimental and theoretical foundations for the sustainability application of nanofluids technology on the ammonia absorption refrigeration system and suply a novel approach for developing efficient equipment.
保证纳米粒子在系统中连续稳定循环是应用纳米制冷剂提高氨水吸收式制冷系统能效的关键,本项目拟在对纳米流体强化氨水吸收式制冷系统吸收和发生过程的研究基础上,对纳米流体技术系统应用所面临的动态稳定性及可持续性等现实问题进行研究,包括以下方面:(1)通过探寻纳米流体在氨水吸收式制冷溶液循环系统中经历变速-变温-变压-变浓度的交替变化过程后的动态稳定性及变化规律制备出适宜的纳米流体;(2)研究纳米流体物性变化规律以及在系统管路壁面的沉降和吸附特性及其可逆性,建立包含时间参数的氨水纳米流体物性计算模型,并反馈优化纳米流体的制备方法;(3)设计一体化分散方法和装置并研究其对纳米流体及氨水吸收式制冷系统的动态性能的影响,研发适用于氨水吸收式制冷系统的纳米流体以及一体化的分散装置和方法。本研究将为促进纳米流体技术在氨水吸收式制冷系统中的可持续应用提供实验和理论依据,为开发新型高效制冷设备提供新的思路。
保证纳米粒子在系统中连续稳定循环是应用纳米流体提高氨水吸收式制冷系统能效的关键,本项目在对纳米流体强化氨水吸收式制冷系统吸收和发生过程的研究基础上,对纳米流体技术系统应用所面临的动态稳定性及可持续性等现实问题进行了研究,包括以下方面:(1)进行了不同纳米粒子与表面活性剂的正交配制实验,获得了针对不同纳米粒子的有效分散剂种类,并利用比吸光度和离心筛选原理进行了纳米流体的优化制备。(2)通过实验研究了纳米流体经历动态分散系统的交变循环过程后,纳米流体的分散稳定性、粘度、导热系数及表面张力的变化规律。(3)研究了纳米粒子与不同金属壁面的吸附结垢特性及其可逆性,建立了针对不同粒子形状的纳米流体导热系数的计算模型,并验证了模型的计算精度。(4)搭建了小型分散一体化的纳米-氨水吸收式制冷系统实验装置,实现了系统的稳定运行,且系统COP可提高14%-27%。本研究将为促进纳米流体技术在氨水吸收式制冷系统中的可持续应用提供实验和理论依据,为开发新型高效制冷设备提供新的思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
内点最大化与冗余点控制的小型无人机遥感图像配准
卫生系统韧性研究概况及其展望
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
纳米氨水吸收式制冷系统性能及其溶液循环稳定性研究
纳米颗粒强化氨水吸收机理研究
纳米流体强化氨水鼓泡吸收性能的机理研究
磁场强化氨水吸收机理研究