With the rapid development of high power devices and high performance integrated circuits, the internal related thermal problem become more and more serious. As a result, it is difficult to solve thermal problems with high thermal flux adopting conventional cooling techniques. Thermoelectric cooling technology may solve the problems due to its unique advantages in terms of heat dissipation with integrated packaging. However, some key issues such as electro-thermal conversion regulation mechanism and cooling efficiency enhancement remain to be solved. The applicant will deeply focus on the electro-thermal conversion regulation mechanism, collaborative cooling based on energy harvesting, design and verification on thermoelectric experiment. Main contents are as follows: 1) The electro-thermal conversion regulation for thermoelectric coolers is built considering the voltage-controlled model with tunable conductivity and heat conduction mechanism for energy transformation. 2) Collaborative cooling method is proposed based on energy harvesting. According to the method, effective measures to improve the cooling performance and efficiency can be obtained from the aspect of enhanced feedback cooling and efficiency optimization. 3) On the basis of developing prototype devices, collaborative cooling integration platform is constructed, which verifies the proposed method with energy harvesting. In this project, foundation problems such as thermoelectric performance regulation and effectiveness optimization are studied quantitatively, which will provide a novel theory, method and verification technology for thermoelectric collaborative cooling, guiding the development and application of efficient green cooling technology.
随着大功率器件和高性能集成电路的快速发展,与之相关的“热”问题愈发严重,采用传统制冷方式解决高热流密度散热问题已遇到了瓶颈。而热电制冷技术在集成散热方面具有独特优势,但在电热转换调控和制冷效率增强等方面仍面临一些尚需解决的关键问题,本项目围绕电热转换效率调控作用机理、能量收集机制的协同制冷、热电实验设计与验证等方面开展深入研究。具体包括:1)考虑等效热导率电压调控模型和能量变换热传导机制下,研究热电制冷器电热转换效率调控机理。2)提出能量收集机制的热电协同制冷方法,从反馈式制冷增强和能效优化等方面研究改善制冷性能和提高制冷效率的有效手段。3)开发设计热电原型器件,搭建基于复合能量收集与传递的协同制冷集成平台,验证能量收集协同制冷方法的有效性。本项目定量研究电热转换性能调控和效能优化两个关键科学问题,将为热电协同制冷提供新的理论、方法和验证技术,推动高效绿色制冷技术的发展和应用。
本项目研究提出了热电致冷器电热转换效率调控基础理论及方法,并应用于搭建的TEG-TEC热电协同制冷系统进而验证能量收集与转换的能效提升。首先,本项目探讨了双栅极石墨烯热电器件的电压调控特性,获取塞贝克系数、通道电阻和电导率计算模型,详细论证了电压对热电器件的性能调控机理,在实验上证实了热电材料热电特性的受控因素和调控规律。在Energy Technol. 8. 1901466. (2020) 的成果中,提出了一种带有顶栅和背栅结构的双栅极石墨烯热电器件模型,揭示了热电参数之间相互制约的特征规律。在IEEE Trans. Ind Electron, vol. 69, no. 5.(2022)的成果中,通过对电源管理策略与控温算法的调控执行,实现了热电器件参数修正和精确的电压调控。其次,申请人提出了光伏充电为主、电源充电为辅的双蓄电池组协同制冷、回环稳压补偿电路、智能电源轨道切换等供能方法策略,在实验上开展了多种将TEG收集到的热能转化为电流电能补充至TEC回路的电路设计:包括反激式拓扑升压超低电压升压电路模块、TEG输入热能到输出电能的转换传导和DC-DC稳压机制电路,搭建了多机制能量收集制冷实验平台进而揭示电压控制电流源TEG辅助供能等方法实现热电转换能效提升的作用规律[IEEE Trans. Electron Devices, vol. 66, no. 11. (2019)]。最后,实验研究结果证实新型TEG-TEC压控恒流源协同制冷系统将能效转化效率平均提高13%(ΔTTEG=80°C,TTEC_h=300K)[IEEE Trans. Compon. Packag. Manufact. Tech., vol. 11, no. 6. (2021)]。与传统TEC-TEG串联制冷系统相比,采用项目提出的RC延迟型电源轨切换协同制冷方案可将功率器件LED的节温降低10℃[IEEE Trans. Compon. Packag. Manufact. Tech., vol. 10, no. 9. (2020)]。申请人在项目执行过程中,发表支持本项目的第一作者或通讯作者SCI期刊论文有9篇,其中IEEE Trans.长文6篇,包括IEEE TIE、TED、TIM和TCPMT。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
"IL-25/IL25R-MAPK-Foxp3"轴调控Treg细胞分化及引发脓毒症免疫抑制的机制研究
脉冲强化热电制冷的瞬态热-电输运协同机制及能量转换分配机理
脉冲强化热电制冷的瞬态热输运特性及热电转换规律
压电式复合路面能量收集效率的协同增强方法
系统芯片的高效定点微机电热电制冷技术研究