Exploring of the physical essence of the excellent properties of materials processed by laser shock peening (LSP) and the exploration of the stability of their excellent performance are the research focuses in the current academic fields. . The micro/nano-structure evolution mechanism of the aluminum alloy surface in the process of ultra-high-strain-rate plastic deformation induced by LSP will be investigated based on multi-disciplinary blending especially on the perspectives of the dynamic behavior of materials. Advanced experimental techniques such as EBSD/SEM、TEM/HREM、SR-SAXS and SWXR will be comprehensively used in the present project.. A technique for stability of the microstructure/residual stress acquired by LSP will be designed and developed based on the thermal-mechanical coupling theory as well as method. The realization of the optimization of the dislocation/grain boundary pinning effect will be carried out based on the integration of the advantages of the ultra-high-strain-rate deformation, dynamic strain aging, dynamic precipitation, and static aging mechanisms. The influence of nano-precipitate’s types, sizes and distributions on the dislocation / grain boundary pining effect will be investigated by means of the theoretical/experimental coupling method.. The principle to improve the stability of the microstructure / residual stress induced by LSP will try to be developed, and then the useful references for the physical metallurgy of other thermo-mechanical treatment will be provided.
探索激光冲击强化(LSP)处理提高材料力学性能的物理本质及其优异性能的稳定性是当下学界的热点。本项目立足于多学科交融尤其是材料动态行为的视角,综合运用TEM/HREM、EBSD、SAXS、SWXRD等先进实验技术,对LSP超高应变速率变形过程中金属表层微结构/残余应力的特征及形成机制予以透视与剖析,揭示LSP处理后力学性能大幅提升的本质原因;基于“热-力”耦合的理念和方法,集成超高应变率形变、动态应变时效、动态析出、静态时效等的优势,实现沉淀相对位错/晶界“钉扎效应”的最大化,整体设计并力图发展出提高LSP诱生的特征微结构/残余应力稳定性技术原型;耦合实验和理论分析,揭示沉淀相的种类、尺寸、分布对“钉扎效应”的影响规律与机制,力图建立提高“稳定性”的原理。. 本项目的知识创新将丰富和发展材料动态行为、形变热处理等的理论知识,为探索开发LSP新技术提供实验和理论支撑。
激光冲击强化(LSP)处理将在材料表层产生应变硬化和高幅度/深度的残余压应力,显著提升材料抗疲劳、抗应力腐蚀和耐磨损性能。本项目立足于多学科交融尤其是材料动态行为的视角,对LSP诱生表层微结构/残余应力的特征、演变机制及其热稳定性予以透视与剖析。主要结论如下:.(1)TC17钛合金经LSP处理后沿深度方向形成了梯度微观结构:距离表面越近,位错密度越高;由于近表面处应变速率太高难以发生孪生,孪晶密度越低;表层硬度呈梯度分布(最表面最高),晶粒细化及高密度位错和孪晶是其产生原因。.(2) LSP后,TC17钛合金最表面的晶粒尺寸由43μm瞬间细化至396nm,动力学定量计算表明是旋转动态再结晶的结果。.(3)退火温度不超过673K时晶粒发生均匀长大;而当退火温度超过673K时,最表面晶粒发生异常长大、近表面硬度值显著下降;673K是TC17钛合金LSP微结构显著变化的转折温度。.(4)2195铝锂合金LSP后,纳米化具备梯度变化特征,多次LSP冲击能使.表层纳米晶粒进一步细化但程度有限;动力学计算验证了LSP后的晶粒瞬间细化是旋转动态再结晶的结果。.(5)表层硬度呈梯度分布(最表面最高),一次LSP表面硬度提升29.5%,三次LSP提升36.8%;1次LSP后表面残余压应力为 -199 MPa,3次LSP后表面残余压应力达-266MPa。.(6)LSP过程中2195铝锂合金的析出相瞬间部分溶解。绝热温升、高密度位错为其提供了条件。.(7)在应力腐蚀环境中,残余压应力和晶粒细化表层的存在有效阻碍了裂纹萌生和扩展。.(8)三次LSP后表层晶粒显著长大温度为350℃,表面残余压应力释放和表面硬度减小临界温度为300℃;而单次LSP后对应的温度分别为300℃和250℃。.(9)LSP后的退火过程中,T1相的二次析出对微结构/性能的热稳定性有重要作用。. 已在国际著名学术刊物J.Alloy.Compd.、Opt.Laser.Tech.、Mater.Sci.Eng.A、J.Mater.Sci.、Mater.Charact.、Phil.Mag.、J.Mater.Res.、J.Mater.Eng.Perfor.等上公开发表论文30篇。. 本项目的知识创新将丰富和发展材料动态行为,为探索开发LSP新技术提供实验和理论支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
基于改进LinkNet的寒旱区遥感图像河流识别方法
基于腔内级联变频的0.63μm波段多波长激光器
脉冲直流溅射Zr薄膜的微结构和应力研究
血管内皮细胞线粒体动力学相关功能与心血管疾病关系的研究进展
金属材料激光冲击表面纳米化超高应变率塑性变形机理研究
激光冲击作用下金属材料残余应力场的响应规律和强化效应
激光冲击飞机叶片的超高应变率再制造基础研究
超高压高应变率冷塑性激光冲击成形的基础研究