The plastic deformation of ultra-high strain rates for metallic materials, which is caused by shock waves, is a cutting-edge issue of the study of material dynamics and surface science. Shock wave generated by short pulse high-energy laser can be applied to achieve surface nanocrystallization of metallic materials. The principle of grain refinement can be revealed by observing microstructure changes of material after being shocked. However, the formation of the surface nanocrystallization is closely related to the characteristics of the shock wave. The mechanism of surface nano-crystallization by laser shock waves will not be known if the transmission characteristics of different-scale shock waves and the history and details of microstructure changes on the wave surface are not well known. Combining theoretical analysis, numerical simulation of molecular dynamics, and advanced test in experiment, this project focuses on transmission characteristics of laser shock waves and plastic deformation mechanism of ultra-high strain rates, using a nickelbase single crystal superalloy DD6. A MD shock loading model will be developed, based on the testing result of macro shock wave characteristics, to form the profile map of micro-scale shock waves, and study the corresponding laws of structure characteristics of shock wave surface and microstructure changes. Moreover, the structure evolution law and formation mechanism of surface nanocrystallization of metal materials, which are affected by shock load, will be revealed by comparing the TEM testing results with these corresponding laws under the same conditions. The outcome of this project will improve the understanding of the plastic deformation mechanism of ultra-high strain rates for metallic materials, which are affected by shock waves, and provide theoretical basis for modifying technique and the application of metal materials.
冲击波作用下的金属材料超高应变率塑性变形是材料动力学和表面科学研究的前沿问题。短脉冲高能量激光诱导冲击波可实现金属材料表面纳米化,晶粒细化原理是通过观察激光冲击波作用后材料微观组织变化总结提出。表面纳米晶的形成与冲击波特性密切相关,当前研究对冲击波传播特性与波阵面微观组织变形历史和细节认识不深入,致使激光冲击表面纳米化机理不清楚。本项目以DD6镍基单晶为研究对象,将理论分析、分子动力学数值仿真和先进试验测试相结合,围绕激光冲击波传播特性及超高应变率塑性变形机理开展研究。以宏观冲击波特性测试结果为条件,构建MD冲击加载模型,获得微观尺度冲击波剖面图,研究冲击波阵面结构特征与微观组织变化的对应规律,并与相同条件下TEM实验测试结果对比分析,揭示金属材料在冲击载荷作用下结构演化规律和表面纳米化形成机理,推动对冲击加载下材料超高应变率塑性变形机理的认识,为冲击波金属材料改性技术与应用提供理论基础。
利用纳秒脉冲高能量激光诱导的冲击波可实现金属材料的表面纳米化,对于航空发动机关键部件抗疲劳制造具有重要意义,但由于激光冲击应变率高(106/s),过程快(~100ns),纳米化形成机理不清楚,限制了进一步发展应用。课题针对“激光冲击波传播特性及超高应变率塑性变形机理” 这一科学问题开展研究。选用航空应用广泛的镍(镍基合金)和钛(钛合金)为研究对象,通过分子动力学数值模拟和TEM试验观察探究激光冲击波阵面微观组织演化细节,揭示了纳米化形成机理,获得参数范围。结论如下:(1)建立了类高斯能量分布激光冲击波压力真实解。采用双光源光子多普勒测速仪对不同工艺参数下镍和纯钛内部应力波传播规律进行测试分析,对经典Fabbro压力公式修正。(2)揭示了不同取向单晶镍激光冲击微观塑性变形机理。单晶镍沿 [100]方向冲击压缩,以fcc结构至hcp结构的相变为主,并形成低密度、大尺寸的堆垛层错结构;沿[110]方向冲击压缩,以高密度网状堆垛层错变形为主。以上结果与TEM试验吻合较好。(3)揭示了纯钛激光冲击微观塑性变形机理。纯钛冲击压缩以孪生变形为主,经历形成孪晶、垂直加载方向生长、无序生长、形成平行孪晶栅四个阶段;在冲击表层观察到了极薄的非晶层,其形成机理与动态再结晶有关。(4)提出了激光冲击波表面纳米化参数范围,并开展了航空发动机涡轮叶片应用验证研究。激光冲击表面纳米化具有激光指向性好、冲击参数可控、表面质量和表面完整性高等技术优势,已在现役涡扇和涡喷系列200余台航空发动机涡轮叶片试制或应用,解决疲劳断裂和寿命短难题,国防应用价值显著。.研究成果发表SCI论文10篇(标注-5篇),个人博士论文在基金课题资助下,获得了中国机械工程学会上银优秀博士论文(2015),军队优秀博士论文(2016)。个人入选了中国科协青年人才托举工程(2017),还担任了“航空发动机及燃气轮机”两机-国家重大科技专项课题负责人(2018),并且部分成果作为支撑点之一获得了2015年度国家技术发明二等奖(2015,排名6)。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
面向云工作流安全的任务调度方法
钢筋混凝土带翼缘剪力墙破坏机理研究
结核性胸膜炎分子及生化免疫学诊断研究进展
敏感性水利工程社会稳定风险演化SD模型
激光冲击飞机叶片的超高应变率再制造基础研究
航空发动机薄壁叶片激光等离子体冲击超高应变率变形机理
超高压高应变率冷塑性激光冲击成形的基础研究
激光冲击微坑高应变率局部动态塑性加工机理与工艺规划研究