The effective control of thermal contact resistance (TCR) on heat management is the fundamental problem of performance and reliability in high power electronic devices. The main targets of this project are to focus on the TCR, carry out research such as the heat transfer character and the control method of the solid-solid TCR by using the new type thermal interface material (TIM) with graphene. With a focus on this urgent need of thermal management, this project will prepare with significant thermal transfer enhancement in modified graphene hybrid composites TIM. The study on TCR by using the TIM mixed with graphene for solid-solid materials will be deeply conducted. The quantitative study about doping of graphene, nano-metal particles and their hybrid composites into epoxy resins to minimize the total TCR will be conducted. The research on the new type TIM not only to the thermal conductivity of the TIM, but also to other factors such as the property of the filler, the microstructural characterization, and the surface morphology of the TIM. The influence on the TCR by the microstructural characterization and the surface morphology of the TIM will be revealed in deeply. The influence of the physical property of the TIM, interfacial structure, assembly pressure and surface morphology on TCR by using the TIM mixed with graphene for solid-solid materials will be discussed. The control method of solid-solid TCR by using the new type TIM will also be established. The research work will support the development of the enhanced method of TCR. This project solves the key problem, such as the heat transfer character and the control method of TCR by using the TIM mixed with graphene for the high-power electronic cooling. The research findings can enrich the connotation of thermal management, provide key technical support for the development of high-power electronic devices, improve the development level and satisfy the urgent needs of high-power electronic devices. Therefore, the research work of this project which focuses on the heat transfer characters of the new type TIM between solid-solid contact materials has merits both in a wide of academic significance and application value.
有效的固_固界面接触热阻控制是高功率电子设备性能和可靠性需关心的重要问题。本项目围绕高性能石墨烯基新型热界面材料的若干共性关键科学问题:固_固界面传热特性及其强化传热调控方法开展研究,制备通过粒子键合强化的不同掺杂种类和份额的多元混合石墨烯基新型热界面材料,深入研究石墨烯基新型热界面材料的固_固界面传热特性,揭示高导热填料的物性、种类、掺杂份额以及热界面材料的微结构特征对界面强化传热性能的影响规律,发展多元混合新型热界面材料的固_固界面传热调控方法,诠释热界面材料属性、界面结构、装配压力、表面形貌对固_固界面接触传热的影响规律,建立高性能石墨烯基新型热界面材料的固_固界面接触传热强化方法,推动电子设备接触热阻调控方法的进一步深入发展。本项研究将丰富电子设备热管理领域的研究内涵,为电子设备的研制提供关键技术支撑,将对提高我国电子设备研制水平、满足紧迫的现实需求具有重要的学术意义和应用价值。
本项目综合应用纳米材料技术和传热理论,研制石墨烯基新型高效热界面材料。围绕着高性能石墨烯基新型热界面材料的调控方法、制备及固_固界面强化传热特性表征、实验测试等方面内容,研究石墨烯基新型高效热界面材料强化传热机理和性能,探索以石墨烯作为强化传热填料的新一代固_固界面强化传热技术。该项目对于丰富热科学领域的研究内涵,提高电子冷却换热设备的高效低阻紧凑等性能,满足高负荷传热与冷却要求,推动界面接触传热调控在能源、航空、电子等领域的应用具有重要的理论意义和潜在的经济价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
特斯拉涡轮机运行性能研究综述
拥堵路网交通流均衡分配模型
基于二维材料的自旋-轨道矩研究进展
低氧诱导假基因PDIA3P1/miR-124-3p相关通路促进胶质母细胞瘤间充质表型转化的机制研究
高导热石墨烯基热界面材料的设计及传热机理研究
新型石墨烯接枝强化聚乙二醇复合固--固相变材料的分子结构调控与储热特性研究
氧化石墨烯固液界面的同步辐射研究
固-固界面结构预测方法及应用