Electromagnetic functional devices based on wavefront manipulation have broad applications in many important fields, such as physics,optical imaging, optical communications,and sensing. Compared with many traditional electromagnetic materials and devices,artificial metamaterials have unique advantange on wavefront manipultion, and have great potential in the development of novel electromagnetic functional devices.However,those wavefront manipulation devices using metal antennas based on the principle of electromagnetic resonance have several disadvantages, such as low working efficiencny, hence limiting the application field. This project intends to utilize the giant modal effective index in metal/dielectric multilayer based hyperbolic metamaterial waveguide array,to introduce phase gradient by acculating phase through the propagation of electromagnetic waves in this waveguide array, and further manipulate electromagnetic wavefront, and construct novel high-performance transmissive electromagnetic functional devices for anomalous refraction and focus. While those wavefront manipulation devices based on electromagnetic resonance have the disadvantages of low working efficiency, design complexity, work with reflection mode etc,this novel devices are expected to completely overcome these limitations.The key point of this project is to develop novel wavefront manipulation devices based on hyperbolic electromagnetic metamaterial and improve the efficiency of wavefront manipulation, thus providing the theoretical guidance to design high-performance electromagnetic functional devices by clarifying its intrinsic working mechanism on wavefront manipulation, and benifiting to practical applications of the novel elelctromagnetic devices as well.
基于波前控制的电磁波功能器件在物理学、光学成像、光通信、传感等诸多重要领域有着广泛的应用。人工超材料在波前控制方面具有许多传统电磁材料和器件无法比拟的独特优势,在新型电磁波功能器件的开发方面具有巨大潜力。然而,基于金属天线等电磁共振原理的超材料波前控制器件存在工作效率低等缺陷,限制了器件的应用领域。本项目拟利用双曲色散超材料波导具有巨大模式折射率的电磁特性,通过电磁波在双曲色散超材料波导中传输累积相位的原理引入相位梯度,进而调控电磁波波前,并开发新型高效透射式的波束异常偏转、聚焦功能的电磁波器件。此新型器件有望彻底摆脱基于金属天线等电磁共振原理的波前控制器件存在工作效率低、设计复杂、反射式工作等缺陷。本项目的创新点在于设计基于双曲色散电磁超材料的新型波前控制器件,提高波前控制效率,通过研究其波前控制工作机理,不但为设计高效的电磁波功能器件提供理论基础,而且为其实用化具有一定的指导意义。
在国家自然科学基金的资助下,我和项目组的成员一起,系统地开展了微纳米光学方面的相关研究工作,取得了一系列原创性研究成果,在物理光学领域SCI期刊共发表论文18篇。在基于双曲色散超材料的新型波前控制器件方面基本实现了既定研究目标,发表SCI论文2篇[Advanced Optical Materials, 2019, 7(20): 1900493; Chin. Phys. B, 2020, 29(8): 84210-084210],可实现对光束的异常折射、光学聚焦及特种光束。拓展了双曲色散超材料在电磁波偏振调控方面的应用,分别提出了两种有效方案成功实现了宽带四分之一波片,发表SCI论文3篇[Scientific Reports, 2017, 7(1): 1-10; Scientific Reports, 2018, 8(1): 1-9; Physical Review Applied, 2019, 11(4): 044042];在基于超表面的准直光束与艾里光束方向,发表SCI论文8篇,通过引入光学性质可调的石墨烯材料,实现了动态可调的准直器和偏振选择的光束偏折器;石墨烯硅基片上动态器件方向,发表SCI论文5篇,设计的偏振分束旋转器可以实现11.1μm的耦合长度,同时TM模式耦合到TE模式的转化效率大于-0.5dB,其对应的工作波段为1516到1602 nm,基于超表面的石墨烯调制器,器件长度仅需0.96 μm,可将调制深度提高到4.66 dB /μm,插入损耗为1.4 dB /μm,同时具有加工简易的优点;在硅基非对称传输器件方向,发表SCI论文1篇[Physical Review Letters, 2020, 125(18): 187403],提出了哈密尔顿量跳变理论,规避模式损耗,缩短器件尺寸,传输效率实验报道超过90%。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
硬件木马:关键问题研究进展及新动向
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
电磁波在双曲超构材料中的传播与控制
基于双曲色散材料的无掩模纳米光学光刻方法研究
双曲传输线特异材料的电磁特性研究
基于新型人工电磁材料的超级传输器件研究