Kidney cancer is among the top ten leading malignancies worldwide, the most common sub-type of which is clear cell renal cell carcinoma (ccRCC). Over 90% of ccRCC tumors exhibit inactivation of the von Hippel-Lindau (VHL) gene, leading to the normoxic stabilization of hypoxia inducible factors (HIFs). However, VHL ablation in mouse kidney fails to induce ccRCC formation, suggesting that additional oncogenic changes are essential. Recently, we identified fructose-1, 6-bisphosphatase 1 (FBP1) as a universally-depleted metabolic enzyme in ccRCC tumors. FBP1 functions as a dual-role tumor suppressor by inhibiting glycolysis and nuclear HIF activity. Based on these previous findings, we seek to further characterize the metabolic and transcriptional impact of FBP1 on ccRCC progression, primary focusing on the molecular mechanisms and regulatory pathways behind aforementioned phenotypes. Specifically, we plan to investigate FBP1-mediated reprogramming of glutamine metabolism and mitochondrial respiration, as well as whether the FBP1-associated metabolic co-factors modulate the ability of FBP1 to inhibit HIF. A deeper understanding of these molecular details will provide solid basis for studying the cooperative effect of FBP1 down-regulation and VHL depletion during ccRCC initiation, and assist to identify novel therapeutic targets to treat kidney cancer.
肾癌是全球十大癌症之一,其主要亚型是肾透明细胞癌(ccRCC)。超过90%的ccRCC肿瘤具有VHL基因失活,从而导致低氧诱导因子HIF在肿瘤中的稳定表达。但是,小鼠肾脏中的条件性VHL敲除不足以引发肾肿瘤,说明肾癌形成过程中有其他必须的分子机制。申请人之前的工作表明果糖-1,6-二磷酸酶1(FBP1)的表达在ccRCC肿瘤中普遍下调,并且FBP1通过双重作用抑制肿瘤生长:FBP1不仅能有效拮抗细胞糖酵解,还能在细胞核内抑制HIF的转录活性。基于这些研究成果,我们计划深入探索FBP1抑制肿瘤生长的分子机理和上游调控机制。首先,我们将研究FBP1调控谷氨酰胺代谢重排和线粒体呼吸的原理;其次,我们会探求能与FBP1结合的代谢物对于FBP1抑制HIF活性的影响。这两项工作会为阐明FBP1下调和VHL缺失对于ccRCC初始发生的协同促进效应打下坚实基础,并为发展针对肾癌的治疗手段提供新的靶点。
肾癌是全球多发的恶性肿瘤之一,且复发后预后很差。本项目以肾癌为主要研究对象,围绕肾癌中常见的代谢重排现象进行了两方面的研究,分别是解析糖异生代谢酶FBP1 调控肾癌细胞谷氨酰胺代谢的分子机理,以及探索可调控FBP1 酶学活性的小分子代谢物对FBP1 抑制HIF 活性的影响。首先,基于我们对肾肿瘤中糖异生酶FBP1异常表达的早期研究,进一步发现了FBP1对于表观遗传因子EZH2有结合和抑制作用,可通过调控EZH2的活性增强其下游基因的表达(Cancer Research 2020,通讯),其中包括和谷氨酰胺氮代谢有关的尿素循环代谢酶ARG2和ASS1。敲降这两个代谢酶可以重编程肾癌细胞的氨基酸和能量代谢,从而促进肿瘤的恶性进展(Cell Metabolism 2018)。其次,我们发现了能量相关小分子代谢物AMP可参与调控FBP1与HIF的相互作用,这提示FBP1-HIF相互作用轴可能成为细胞在低氧环境中感受能量状态的效应器。确认FBP1在这一过程中发挥的重要作用以后,我们建立了一种数学模型用以筛选和肿瘤恶性进展相关的其他重要代谢靶点,以期鉴定更多的代谢状态感受器。经过建模计算和实验测试,我们筛选并验证了三个显著调控肿瘤瓦伯格效应的关键代谢酶,可在将来进行后续研究(Cell Communication and Signaling 2019,共同通讯)。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
基于结构设计合成新型果糖1,6-二磷酸酶抑制剂
锌指蛋白ZBTB20调节β细胞果糖1,6-二磷酸酶FBP1基因转录的机制研究
人体肝脏果糖-1,6-二磷酸酶活性中心与活性分子相互作用的机理及其调控研究
果糖1,6-二磷酸醛缩酶B调控肝癌糖代谢重构的机制研究