With increasing depth of mining excavation, the occurrence of mining induced rockmass instability hazards shows an upward tendency. In this project, taking the frequent rock instability disasters happened in mines, hydropower, tunnels and other deep rock engineering for research background, the key scientific issues, i.e. thermo-hydro-mechanical coupled creep instability of rock, are to be concentrated. Considering the high-temperature, high-seepage pressure and high geostress in deep rock mass and confining pressure unloading path, a series of triaxial creep experiments on rock under different temperatures, seepage pressures and differential stress will be performed to study the characteristics of creep damage evolution and creep rate with time and to get the effect of temperature, seepage pressure, stress and cross-coupling of thermo-hydro-mechanical process on creep. Based on above, we will derive multiphysical coupled thermo-hydro-mechanical creep model, estabilish numerical method of describe the coupled thermo-hydro-mechanical creep, carry out a series of numerical simulations on rock creep damage and failure under the thermo-hydro-mechanical coupling interactions, reveal the coupled thermo-hydro-mechanical creep damage and failure mechanism of deep rock mass, and gain a better understanding into the development and cross-coupling mechanism of deep rockmass creep instability failure. It is of great importance to control and prevent the catastrophic creep failure of deep rock mass and minimizes the impact of rockmass instability hazards on mining activities, meanwhile, it is also of significance to develop a better understanding of the safe and efficient rock engineering design and operation and provide a theoretical basis to predict the deformation and long-term stability of deep rock engineering.
本项目以矿山、水电、隧道等深部岩石工程围岩的流变失稳这一频发工程灾害为研究背景,以温度-渗流-应力耦合作用下岩石的蠕变失稳这一关键科学问题为核心,围绕深部岩体卸荷失稳的蠕变变形机理,基于一定的围压卸荷路径和深部特殊环境下高地温、高渗透压力和高地应力条件,开展一系列不同温度、不同渗透压力、不同差应力作用下的三轴流变试验,分析岩石蠕变变形损伤演化规律及蠕变应变率随时间变化的发展阶段特征,获得温度、渗透压、应力及其耦合作用对岩石蠕变的影响规律及相关关系,建立考虑温度-渗流-应力耦合作用下的岩石蠕变损伤本构模型,编制开发温度-渗流-应力耦合作用下的岩石蠕变损伤过程数值仿真模拟方法,并开展一系列不同温度、渗透压及差应力耦合作用下岩石蠕变失稳的大规模数值试验研究,揭示温度-渗流-应力耦合作用下深部岩石工程的蠕变失稳破坏机理,为寻求深部岩体工程的变形失稳控制方法及长期稳定性预测提供理论和应用基础。
本项目以矿山、水电、隧道等深部岩石工程围岩的流变失稳这一频发工程灾害为研究背景,以温度-渗流-应力耦合作用下岩石的蠕变失稳这一关键科学问题为核心,围绕深部岩体卸荷失稳的蠕变变形机理,基于一定的围压卸荷路径和深部特殊环境下高地温、高渗透压力和高地应力条件,开展一系列不同温度、不同渗透压力、不同差应力作用下的三轴流变试验,分析了岩石蠕变变形损伤演化规律及蠕变应变率随时间变化的发展阶段特征,获得温度、渗透压、应力及其耦合作用对岩石蠕变的影响规律及相关关系,建立了考虑温度-渗流-应力耦合作用下的岩石蠕变损伤本构模型,编制开发了温度-渗流-应力耦合作用下的岩石蠕变损伤过程数值仿真模拟方法,并开展了一系列不同温度、渗透压及差应力耦合作用下岩石蠕变失稳的大规模数值试验研究,揭示了温度-渗流-应力耦合作用下深部岩石工程的蠕变失稳破坏机理,为深部岩体工程长期稳定性预测提供了理论和应用基础。通过本项目研究,项目组发表论文32篇,国际期刊SCI收录论文23篇(其中合作发表ESI高被引论文1篇)、EI收录论文4篇;申请计算软件著作权5项。获得中国岩石力学与工程学会科技进步奖一等奖1项、教育部高科学研究优秀成果科技进步二等奖2项。培养硕士研究生8名。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
双吸离心泵压力脉动特性数值模拟及试验研究
不同应力路径下路基软粘土的蠕变特性与蠕变模型
渗流-应力场耦合作用下碱激发金属尾矿膨胀充填体蠕变损伤研究
水库滑坡渗流与蠕变耦合分析
各向异性岩体渗流应力耦合蠕变破坏演化模型研究