The adhesion of clathrate hydrate and paraffin is main cause for pipeline blocking of oil and gas transmission. The purpose of this project is to prohibit the adhesion of clathrate hydrate and paraffin on the solid surface. Based on the scientific cognition about the adhesion mechanism of fouling agent and solid surface, combined with the molecular design concept, the biomimetic super slippery coating material with low surface free energy will be constructed. The constructing mechanism of the novel biomimetic super slippery coating material, the theories of stabilization, and the special surface physical and chemical properties will be explored systematically. Setting fluorosilane coupling agent, methyltrimethoxysilane (MTMS) and nano silicon sol will be supplied as raw materials, the fluorinated hybridization coating comprised of micro-nano hierarchical structure will be prepared via sol-gel method through hydrolytic condensation. Subsequently, the hierarchical fluorinated hybridization coating will be infused with various kinds of reactive fluorosilicone oil with low surface energy. Finally, the Nepenthes mirabilis-inspired omniphobic anti-adhesive super slippery surface will be acquired. The omniphobic, anti-adhesive and anti-icing properties will be investigated, and the mechanisms of the formation of the super slippery surface will be explored. In addition, the long-term stability of the super slippery surface under extremely strict conditions will also be tested. Furthermore, the homemade clathrate hydrate which is consisted of cyclopentane and water will be modelled to quantitatively analysis the adhesive effect of clathrate hydrate and crystalline wax on the super slippery surface. The regime of the formation of the super slippery surface and the adhesion property will be revealed from the scientific aspect. The design, preparation, and systematically investigation of the biomimetic super slippery antifouling coating endowed with low surface energy will provide new idea and theoretical evidence for the development of new anti-adhesive materials aimed at clathrate hydrate and paraffin.
笼形水合物和石蜡粘附是造成油气输送管线堵塞的重要原因,本项目以抑制笼形水合物和 石蜡在固体表面的粘附为目标,基于表面的粘附现象的认识以及分子设计的理念,仿生构筑具有 猪笼草结构的超光滑抗沾污表面。采用氟硅烷偶联剂、甲基三甲氧基硅烷、纳米硅溶胶等为原 料,利用溶胶-凝胶法水解共缩合制备具有纳微多尺度结构的含氟杂化涂层,再以此为基材, 浸润端基反应型全氟油,构建全疏型抗粘附的超光滑表面。系统研究该表面的抗粘附与防覆冰 性能,探讨超光滑表面的形成与超润滑机理,考察在强化破坏与损失环境下的超浸润表面的耐 久性。进一步以自制环戊烷与水形成的笼形水合物为模型,定量分析水合物以及结晶蜡在超光 滑表面上的粘附作用,从科学上揭示超润滑表面的形成与粘附机制,为新型抗水合物与石蜡粘 附材料的开发提供新的思路和理论依据。
笼形水合物和石蜡粘附是造成油气输送管线堵塞的重要原因,本项目以抑制笼形水合物和石蜡在固体表面的粘附为目标,基于表面的粘附现象的认识以及分子设计的理念,仿生构筑具有猪笼草结构的超光滑抗沾污表面。采用氟硅烷偶联剂、甲基三甲氧基硅烷、纳米硅溶胶等为原料,利用溶胶-凝胶法水解共缩合制备具有纳微多尺度结构的含氟杂化涂层,再以此为基材,浸润端基反应型全氟油,构建全疏型抗粘附的超光滑表面;同时为解决超润滑表面润滑层易流失的问题,构建了热响应型“类似液体”型(Liquid-like)疏液型表面,解决了涂层抗粘附效果下降的问题,且可作为含氟超浸润涂层的基础材料,为后续具有抗笼型水合物与石蜡粘附的超润滑材料的构筑提供了基础;最后提出了一种原位自补充非氟化耐用的蜡烛烟尘颗粒疏水涂层,可通过促进水合物和烟灰涂层基材之间的碳氢化合物厚屏障膜来减少水合物的附着力。渗透到烟尘涂层中的碳氢化合物显示出对水的高接触角,并抑制了水合物和烟尘涂层基材之间水桥的形成。探究了球形环戊烷水合物、水合物形成剂、环戊烷-水乳液和THF-水混合物在涂层上的附着力。定量分析水合物以及结晶蜡在超光滑表面上的粘附作用,从科学上揭示超润滑表面的形成与粘附机制,为新型抗水合物与石蜡粘附材料的开发提供新的思路和理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
面向云工作流安全的任务调度方法
基于二维材料的自旋-轨道矩研究进展
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
纳米氧化锌-氧化石墨烯/水性含氟聚氨酯超双疏涂层的构筑及其海洋防污机理研究
超全疏型表面的构筑及其液体排斥机制研究
超疏水超疏天然气管壁的构建及其抑制水合物成核和防粘机制
膜蒸馏过程抗结垢全疏膜的构建及其抗结垢机制的研究