The rapid development of military equipment, aerospace exploration and deep mining has put forward higher requirements for the heat-resistant properties of energetic compounds. The heat-resistant properties of traditional energetic compounds are unable to meet the application requirements under harsh environments. The enhancement of hydrogen bonding and conjugation stabilization effects are the main approaches to enhance the heat-resistant properties of energetic compounds, but the effects are quite limited. Therefore, it is urgent to find new ways to further enhance the heat-resistant properties of energetic compounds. It has been proved that the heat-resistant properties of energetic compounds with organic inner salt structures are excellent, but the salt effect on the influence mechanism of the heat resistance of the compounds has not been systematically and deeply studied. This project is based on based on the construction of different types of tetraazapentalene skeletons. The thermal behavior and thermal decomposition mechanism of tetraazapentalenes with different skeletons and substituents were investigated by thermal analysis methods. The studies of salt-forming effect on the influence of thermal properties will be carried out. We plan to clarify the specific mechanism salt effect of thermal stability improvement through thermal analysis and thermal decomposition kinetics studies.Derivatization studies will be carried out by the formation of extended conjugated system and introduction of new amino groups. All the new structures will help to analysis the compatibilities between salt effect with hydrogen bonding effect and conjugated effect. The project research will provide a theoretical basis for the development of new heat resistant energetic compounds with organic internal salt structures and provide reference for regularity study of other types of heat resistant energetic compounds.
军事装备、宇航探测及深井开采的飞速发展对含能化合物耐热性能提出了更高要求,传统含能化合物耐热性能已难以满足苛刻条件下的应用需求。增强氢键及共轭稳定化效应作为提升含能化合物热稳定性的主要途径,效果已非常有限,亟需寻求新的途径实现耐热性能的进一步提升。研究证实有机内盐型含能化合物耐热性能优异,然而成盐效应对化合物耐热性能的作用机制缺乏系统和深入的研究。本项目以不同结构的并四氮杂戊搭烯合成研究为基础,通过热分析手段考察不同环系骨架和取代基的四氮杂戊搭烯内盐的热行为及热分解机制,探究成盐效应对化合物耐热特性的影响。结合相关热分解动力学及分解产物研究,明晰成盐效应对热稳定性提升的具体作用机制;利用衍生化研究扩展不同的共轭体系并引入氨基结构,探究成盐效应与氢键效应、共轭效应的兼容性。通过项目研究为新型有机内盐型耐热含能化合物研发提供理论基础,并为其他类型耐热含能化合物的规律性研究提供借鉴。
利用成盐效应,尤其是内盐效应,提升含能化合物的耐热特性是获得耐热含能材料的重要途径。本研究项目以内盐效应研究为主线,系统探索了有机内盐型含能化合物以及钙钛矿类内盐型含能化合物的热行为、热特性及热分解机理。通过不同结构的含能并四氮杂戊搭烯化合物以及不同种类的含能钙钛矿化合物的比较性研究,在国内外首次实现了有机内盐型含能化合物和有机-无机复合型钙钛矿类内盐型含能化合物的系统性、对比性热分解行为研究。本项目通过对相关高耐热特性的化合物进行了热分解机制探索,不仅系统阐释了成盐效应在耐热含能材料研究中的重要意义,也为其他种类耐热含能化合物的研发提供了重要借鉴。
{{i.achievement_title}}
数据更新时间:2023-05-31
聚酰胺酸盐薄膜的亚胺化历程研究
基于天然气发动机排气余热回收系统的非共沸混合工质性能分析
氰化法综合回收含碲金精矿中金和碲的工艺研究
添加有机物料对豫中烟田土壤呼吸的影响
压电驱动微型精密夹持机构设计与实验研究
双呋咱并吡嗪耐热含能化合物的设计、合成及热性能研究
呋咱醚含能化合物合成及热性能研究
小麦耐热性遗传研究
自噬相关基因CaATG8在辣椒耐热性形成中的功能与调控