This project presents a heavy oil viscosity reduction technology of nano-magnetic fluid supported catalyst in the magnetic field. The technology utilizes advantages of catalytic hydrothermal reforming viscosity reduction, electromagnetic viscosity reduction and oil-soluble viscosity reducer viscosity reduction from domestic and foreign new heavy oil viscosity reduction technology. Moreover, it combines with good heat-transfer character of nano-magnetic fluid. In the project, nanoparticle Fe3O4 is used as nuclear in the nano-magnetic fluid supported catalyst. The nuclear’s outer layer adsorbs catalyst, and the lipophilic and pro-thermosensitive material is wrapped in the outermost layer. After catalyst is injected into crude oil, the lipophilic material in the outermost layer makes catalyst disperse and penetrate into colloid and asphaltene sheet molecules of heavy oil. Then under the external alternating electromagnetic field, heat is generated by magnetic fluid and transferred to catalyst, which is activated and react with heavy oil to achieve reforming viscosity reduction. Simultaneously, the alternating electromagnetic field also has a magnetization effect on heavy oil viscosity reduction. At last, magnetic fluid supported catalyst is sucked out of crude oil by permanent magnetic field. This project will focus on research of the preparations of nano-magnetic fluid, nanoparticle catalyst and magnetic fluid supported catalyst. At the same time, heat transfer mechanism, catalytic viscosity reduction mechanism, and experimental testing technology are also focused on research. Heavy oil viscosity reduction technology of nano-magnetic fluid supported catalyst in the magnetic field is formed finally, which provides basic theory for engineering application.
利用国内外新型稠油降黏技术中的水热催化改质降黏、电磁场降黏和油溶性降黏剂降黏三种技术的优点,结合磁流体良好的传热特性,本项目提出一种磁场作用下的纳米磁流体负载催化剂稠油降黏技术。该项技术基于磁流体负载催化剂,用四氧化三铁纳米粒子做核,表层吸附催化剂,外层包裹亲油温敏材料。将催化剂注入原油后,最外层的亲油性材料使得催化剂通过分散、渗透作用进入稠油的胶质及沥青质的片状分子之间,而后受外加交变电磁场的作用,磁流体发热传导给催化剂,使其活化与稠油反应改质降黏,同时交变电磁场对稠油也起到磁化降黏作用,最后用永磁磁场将磁流体负载催化剂从原油中吸出。本项目将着力研究纳米磁流体制备及传热机制、纳米催化剂制备及催化降黏机理、磁流体负载催化剂的制备及实验测试技术。最终形成磁流体负载催化剂稠油降黏技术,为最终的工程化应用奠定理论基础。
本项目提出一种磁场作用下的纳米磁流体负载催化剂稠油降黏技术。研究了Fe3O4磁性纳米粒子的制备方法和制备工艺,以及粒子在不同环境下的磁性能和热性能。设计了永磁磁场发生装置,对装置产生的电磁场进行了解析分析,研究了装置内部区域电磁场的控制特性。研究了磁场对碳酸钙晶体形貌的影响,分析了晶体形貌的改变对稠油降粘的作用。建立了磁流体发热的数学模型,与实验结果进行了对比。研究了纳米磁流体负载催化剂粒子的制备工艺,进行了稠油降粘实验研究。本项目着重研究了纳米磁流体制备及传热机制、纳米催化剂制备及催化降黏机理、磁流体负载催化剂的制备及实验测试技术,为最终的工程化应用奠定理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
上转换纳米材料在光动力疗法中的研究进展
采用黏弹性人工边界时显式算法稳定性条件
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
超稠油的碳纳米-微波协同作用降黏机理研究
环境响应性纳米催化剂的制备及其对稠油催化降粘的作用机制
稠油致黏机理研究
化学辅助热力井下改质降粘开采稠油技术研究