With the continuing trend towards economical, environmental friendly, sustainable, smart and green manufacturing, dry cutting plays an increasingly important role for practical applications. In the study, an internally cooled smart turning tool system and its cutting temperture monitoring and controlling techniques for green manufacturing will be developed to meet dry cutting requirement. For the sake of reducing cutting temperature, a closed circuit cooling system will be applied inside the cutting tool. Dynamic and thermal analysis will be undertaken to determine mechanical stability as well as heat dissipation of the smart turning tool system, in an effort to design and optimize the internally cooled microstructure and tooling system. A mathematic model, which relates the tool cutting temperature to the temperature of cooling liquid at the inlet and outlet of the cooling system, will be established by thermal modelling and simulation method. Based on the developed cutting temperature monitoring technique, an adaptive algorithm will be proposed to optimize process conditions in real time, and adaptive machining for tool wear optimization can be achieved by means of controlling and stabilising the tool cutting temperature. The cooling efficiency and machining performance of the smart turning tool system, accuracy of the cutting temperature monitoring technique and reliability of the adaptive control algorithm will be validated by well-designed experiments. The research has great significance in improving tooling performance, ensuring machining accuracy,productivity and tool life, as well as achieving high quality and efficiency, ecological, ecnomical and sustainable machining.
资源节约、环境友好、可持续发展,智能化、绿色化已成为制造业的发展趋势。为实现这一目标,本项目针对实际生产中干切削的需求,开展面向绿色制造的内冷式智能车刀系统及其切削温度监控技术研究。本研究将循环冷却系统应用于车刀内部来降低切削温度,通过力学与热学仿真分析刀具系统的稳定性及冷却系统的散热性,设计并优化内冷式微结构及车刀系统;通过热分析建立车刀切削温度与冷却系统冷却液进出口温度之间的数学模型;提出以车刀切削温度为约束条件的自适应控制算法,实时监测切削温度波动并优化加工工艺参数,以实现智能自适应加工与刀具磨损优化控制;实验验证智能车刀系统冷却性能和切削性能的有效性,切削温度监测的准确性以及自适应控制的可靠性。本项目的开展为切削加工中提高刀具切削性能,保证加工质量、生产率和刀具寿命,实现高质、高效、环保和低成本的可持续性制造具有十分重要的意义。
本项目瞄准绿色、智能及可持续制造的发展目标,针对实际生产中干切削的需求,开展了面向绿色制造的内冷式智能车刀系统及其切削温度监控技术研究。主要完成的工作包括:1)设计了具有循环冷却系统的模块化内冷却车刀系统,具有密封性好、互换性好的优点;2)提出了热力复合设计分析方法,通过力学与热学仿真分析了车刀系统的稳定性及冷却系统的散热性,设计并优化了内冷式微结构及车刀系统;3)建立了车刀切削温度与冷却系统冷却液进出口温度之间的数学模型,并通过了离线热实验验证; 4)提出了以车刀切削温度为约束条件的自适应控制算法,实时监测切削温度波动并优化加工工艺参数,实现了智能自适应加工与刀具磨损优化控制;5)实验验证了内冷式智能车刀系统的冷却性能和机械性能,实验表明:智能车刀系统冷却性能比传统车刀提高的同时,刀片应力和变形均比传统内冷车刀大幅下降;切削温度监测的准确性和自适应控制的可靠性不仅可以避免刀具崩刃并且能改有效改善刀具的磨损。本项目设计出了冷却效果好、稳定性高、易于工艺实现的内冷式智能车刀系统,实现了预定的研究目标,对实现高质、高效、环保和低成本的可持续性制造具有十分重要的意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于分形L系统的水稻根系建模方法研究
路基土水分传感器室内标定方法与影响因素分析
涡度相关技术及其在陆地生态系统通量研究中的应用
拥堵路网交通流均衡分配模型
内冷与喷雾复合冷却式智能车刀及其切削PBX炸药温度监控研究
面向绿色制造的制造系统风险评估方法研究
高速干切削(准干切削)加工过程智能监控
面向绿色切削的热管刀具研究