High pointing accuracy and stabilization are significant for spacecraft to carry out Earth observing, laser communication and space exploration missions. However, large flexible appendages, such as solar wings and onboard deployable antennas, usually rotate relative to the mainbus of the spacecraft. And the relative motion would result a system with time-varying parameters, which is a great challenge to the high precision attitude control of the flexible spacecraft. Unfortunately, to date dynamical characteristics, attitude control methods for flexible spacecraft with time-varying parameters are not still researched in depth. In order to address these key issues, the dynamic model for spacecraft with flexible movable appendages is established firstly. Then this study reveals the influence of movable appendages such as solar wings and antennas on characteristics of the spacecraft. For systems with time-varying parameters, the optimal variable amplitudes input shaping control method is proposed and the robust variable amplitudes shapers are proposed to improve the robustness. Furthermore, the attitude coupling control method are developed by synthesizing the active vibration controller. Last, the coupling control testbed for flexible spacecraft with time-varying parameters is established and ground tests of attitude maneuver and stabilization are conducted to validate the proposed controllers. All these studies will help us to reveal the objective law of the dynamical characteristics of flexible spacecraft and address key issues of flexible spacecraft to chieve high pointing accuracy and stabilization. These results will be meaningful for flexible spacecraft to achieve high precision.
高精度和高稳定度是航天器执行遥感、激光通信、深空探测等任务的基础。而航天器上太阳翼、天线等挠性附件相对于航天器本体的大范围运动,将导致系统的动力学参数和特性发生变化,对航天器高精度姿态控制系统的设计带来严峻挑战。目前,对带运动挠性附件航天器的动力学特性变化规律、姿态控制方法等问题,未进行深入的研究。针对这些问题,本项目首先建立带运动挠性附件的变参数航天器的动力学模型,其次揭示挠性附件相对于航天器本体的运动对系统动力学特性的影响规律,再次针对变参数系统提出变幅值输入成型姿态控制方法,并考虑鲁棒性提出鲁棒变幅值输入成型方法,进一步结合挠性附件的主动控制提出航天器姿态的耦合控制方法,最后搭建变参数挠性航天器耦合控制实验系统,开展姿态控制地面验证实验。通过研究,揭示变参数挠性航天器动力学特性的时变规律,解决变参数挠性航天器高精度姿态控制的难题,为现代航天器实现高精度和高稳定度提供理论支撑。
针对带大型太阳翼、天线的挠性航天器,首先根据简化模型建立了带挠性附件的变参数航天器的刚柔耦合动力学模型,揭示了挠性附件相对于航天器本体的运动对耦合系统动力学特性的影响规律。针对含运动挠性附件的航天器的姿态机动和姿态稳定问题,研究了时变参数系统的变幅值输入成型姿态机动策略以及结合姿态控制和振动控制的耦合控制算法,有效缩短了航天器姿态机动和姿态稳定的时间。最后开展挠性航天器模拟件大范围姿态机动实验,对比耦合控制和姿态控制下的航天器动力学响应,说明了耦合控制策略在姿态机动和稳定任务中的优势,为高精度对地观测卫星的论证和研制提供了技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
玉米叶向值的全基因组关联分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
变参数航天器姿态与轨道智能自主控制
基于位移场测量的挠性航天器姿态控制与振动抑制研究
挠性航天器姿态跟踪机动的动力学与控制特性的研究
充液挠性航天器姿态快速机动控制与多目标协同优化研究