The generation portfolios including the integration of large-scale renewable energy resources and nuclear power will come to being in the future smart grid, which will result in lack of the resources for frequency regulation of a power grid. In this situation, it is inevitable to explore the demand-side resources, such as electric vehicles (EVs), in order to join in frequency regulation of a power grid. At present, most of the researches on EVs participating in frequency regulation are devoted to discuss the influence of the Vehicle-to-grid (V2G) control on a power grid and EV owners. However, the control mechanism and strategies for EVs to participate in frequency regulation of a power grid in real time are in the infancy. .In this project, we are aiming at exploring the mechanism of the V2G control on EVs joining in frequency regulation, and at the same time presenting the real-time control for EVs to participate in frequency regulation in real time. The contents include three aspects: At first, charging behaviors of EV owners are discussed in order to construct the random distribution models of EV charging demands under diverse scenarios; Besides, the V2G control of EVs taking part in primary frequency regulation is discussed including the mechanism between charging demands and frequency deviation, and the decentralized control strategies for suppressing frequency fluctuation and simultaneously achieving EV charging demands; Finally, the V2G control on EVs to join in the supplementary frequency regulation of a power grid is presented, including the mechanism between charging demands from EV customers and regulation requirements from the control center of a power grid, and the real-time control for the supplementary frequency regulation with centralized dispatch and hierarchical structure. This project will provide the theory support for large-scale EVs to participate in frequency egulation of a power grid in power demand side and the technical reserve for the future smart grid.
未来智能电网将呈现新能源发电和核电大规模接入情境,电网将面临调频资源短缺局面,因而探索电力需求侧调频资源必将成为大势所趋。电动汽车作为需求侧重要调频资源,目前研究主要集中在对电网和用户的影响,而电动汽车入网调频的控制机理和实时控制策略研究还刚刚起步。.本项目旨在揭示电动汽车参与电网频率调节的控制机理,提出电动汽车入网调频的实时控制策略,包括:1)电动汽车用户充电需求研究,在多种情境下建立电动汽车用户充电需求随机分布模型;2)电动汽车一次调频研究,揭示电动汽车用户充电需求与电网频率偏移的作用机理,提出分散控制策略,抑制电网频率波动,同时完成用户充电需求;3)电动汽车二次调频研究,揭示电动汽车用户充电需求与电网调节任务的作用机理,提出集中调度分层控制策略,完成电网调节任务和用户充电需求。通过本项目研究,为电力需求侧大规模电动汽车入网调频奠定理论基础,为未来智能电网建设提供技术储备。
本项目以电动汽车与电网互动为对象,以维持电网频率稳定和满足用户充电需求为目标,在多种场景下通过电动汽车充/放电储能控制,维持电网频率稳定,取得如下成果:(1)建立自动发电控制不确定性调度模型和电动汽车可用容量计算模型以及电动汽车响应集中调度分层控制框架,提出确保电动汽车用电需求和电网调节需求的集中调度控制策略,在不确定调度下,根据电动汽车实时可用容量,协调集中调度调频任务和用户计划充电;(2)揭示了电动汽车柔性储能特性参与电力系统低频减载的机理,构建了基于PMU的电动汽车参与低频减载的集中调度分层控制框架,建立了电动汽车分级响应模型,提出电动汽车参与低频减载的柔性控制策略,通过电动汽车分级响应策略,提高系统频率稳定性,且尽可能避免负荷切除;(3)建立电动汽车响应AGC控制的充电站调度框架和以用户充电为目标的最优调度模型,根据站内用户充电需求、电池SOC状态、实时可用调度容量、AGC调度指令等信息,通过调度任务最优分配,在完成控制中心调度指令的同时,实现调节任务按电动汽车充电需求进行最优分配。项目研究成果的意义在于:从控制中心不确定性调度的角度,为控制中心协调电动汽车充电需求和调节任务提供理论;从电动汽车柔性控制的角度,为电动汽车响应电网紧急控制提供技术支持;从电动汽车充电站管理的角度,为充电站内电动汽车响应调度指令的最优管理提供理论。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
拥堵路网交通流均衡分配模型
五轴联动机床几何误差一次装卡测量方法
行为安全损耗和激励双路径管理理论研究
鸡脂肪细胞因子NRG4基因的克隆、表达及启动子分析
电动汽车无线充电系统动态机理与控制策略研究
电动汽车线控制动同步机理及控制策略研究
船舶电力推进系统直流侧母线电压的稳定控制策略研究
考虑电动汽车充电站控制策略的电力系统可靠性评估与优化研究