Abnormal cytokinesis could result in the failure of cell mitosis, which might cause cell death or abnormal cell proliferation even malignant transformation. Silica nanoparticles led to multinucleation through abnormal cytokinesis in cultured cell line was an important phenomenon we happened to observe and reported in our previous study for the first time, while the underlying molecular mechanism was still not clear. Thus, this study will firstly detect the toxic effect and cytoskeleton damage, observe the process of mitosis real timely, and calculate the number of multinucleated cells in vivo and in vitro, to reflect the adverse effect of silica nanoparticles produced on cytokinesis. Then, some intervention measures were performed in in vitro mechanism research. PI3K activator was used to verify the regulation effect of PI3K signaling on Aurora B activity and expression, and the process of cytokinesis; Aurora B over expression cells were used to identify the influence of Aurora B on Centralspindlin complex cluster, Ect2 and Cep55 location, and the process of central spindle assembly, contractile ring formation as well as abscission. The present study will clarify the related mechanism of abnormal cytokinesis induced by silica nanoparticles and provide new perspectives for the mechanism investigation of abnormal cytokinesis induced by silica nanoparticles.
胞质分裂异常可导致细胞有丝分裂失败并引起细胞死亡或细胞的异常增殖甚至恶性转化。课题组前期研究中首次报道了纳米SiO2引起细胞有丝分裂末期胞质分裂失败并导致细胞多核这一现象,并检测到细胞分裂调控蛋白PI3K及Aurora B表达降低,但具体调控机制不清。本课题首先在体内、体外条件下检测纳米SiO2引起的毒性作用及细胞骨架损伤,并对胞质分裂过程进行实时观察,以明确纳米SiO2与胞质分裂异常的关系。同时,在体外条件下采用PI3K激活剂明确PI3K信号通路对Aurora B及胞质分裂过程的调控,采用Aurora B过表达细胞明确Aurora B对下游Centralspindlin复合体簇集、Ect2和Cep55定位以及中央纺锤体组装、收缩环形成和子细胞脱落等过程的影响,以初步阐明纳米SiO2抑制PI3K信号通路引起Aurora B功能变化在胞质分裂异常中的作用,为纳米颗粒的安全性评价提供实验依据。
纳米二氧化硅环境来源广泛,且工程化无定型纳米二氧化硅全球年产量超过150万吨。职业人群及普通人群经各种途径接触纳米二氧化硅的机会不断增加,其安全性值得关注。课题组前期研究观察到纳米二氧化硅可引起细胞有丝分裂末期胞质分裂失败并导致细胞多核形成,本课题则针对纳米二氧化硅致胞质分裂异常的机制进行了深入研究。纳米二氧化硅理化表征结果表明,研究中使用的颗粒大小均一粒径为46 nm,纯度大于99.9%,在整个实验过程中能保持良好的分散稳定性。体内动物实验结果表明,支气管重复滴注纳米二氧化硅可引起支气管上皮细胞多核形成,同时在肝脏中也观察到了多核细胞比例升高的现象。体外细胞实验结果表明,纳米二氧化硅可引起细胞内ROS过量生成,导致微丝、微管骨架结构及分布的改变,并引起PI3K 110β/Aurora B通路相关蛋白含量降低,胞质分裂关键调控蛋白Centralspindlin复合体的两个亚基MKLP1和CYK4的蛋白含量,以及下游共同调控胞质分裂的关键蛋白Ect2、Cep55、CHMP2A、Rho的蛋白含量或活性的降低,同时使用激光共聚焦显微镜以及免疫共沉淀的方法也检测到了胞质分裂末期Aurora B与MKLP1亚基的共定位异常以及Centralspindlin复合体亚基MKLP1于CYK4的共定位异常。采用ROS抑制剂NAC验证纳米二氧化硅致ROS过度生成在胞质分裂异常中的作用,结果表明NAC可有效抑制细胞内ROS的过度生成,并且缓解纳米二氧化硅所致的PI3K 110β/Aurora B通路蛋白及下游胞质分裂调控蛋白含量及活性的降低,同时明显改善Centralspindlin复合体亚基MKLP1和CYK4的共定位,进而降低细胞多核率。采用PI3K激活剂IGF验证纳米二氧化硅致PI3K 110β/Aurora B通路调控改变在胞质分裂异常中的作用,结果表明IGF可有效提高Aurora B的磷酸化蛋白水平并改善MKLP1和CYK4亚基的共定位,降低细胞多核的形成。综上所述,纳米二氧化硅颗粒体内及体外条件下均可引起细胞多核形成,纳米二氧化硅可通过ROS过量生成引起PI3K 110β/Aurora B通路调控异常,并导致下游Centralspindlin复合体亚基定位异常以及胞质分裂关键调控蛋白含量或活性的降低,最终因胞质分裂失败形成多核细胞。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
Bousangine A, a novel C-17-nor aspidosperma-type monoterpenoid indole alkaloid from Bousigonia angustifolia
含卓酮环的多环稠喹啉骨架的构建.苯并[4,5]卓酮并[1,2-b]喹啉类衍生物合成及抗肿瘤活性研究
微丝骨架参与植物细胞胞质分裂调节的机制
调控细胞分裂面位置的胞质分裂关键信号通路的传导机制研究
烟草BY-2细胞胞质分裂相关基因NtRCP1的功能分析
无定形纳米二氧化硅致多核作用及其相关机制研究