The high-accuracy trajectory optimization of hypersonic flight vehicle has very important theoretical significance and practical application value for further improving the design quality of flight vehicle and improving the precision of navigation, guidance and control. Due to the strong nonlinearity, complex constraints and random disturbances of hypersonic flight vehicles, the traditional methods face difficulties in high-accuracy trajectory optimization such as model transformation and high-precision solution. In order to achieve the high-accuracy trajectory optimization requirement, this project proposes the high-accuracy trajectory optimization study of hypersonic flight vehicles based on adaptive grid control parameterization. Firstly, to tackle the complex multi-constraints, a high-precision constraint transformation modeling theory is studied to reduce the complexity of the trajectory optimization problem model and improve the constraint satisfaction accuracy. Secondly, an adaptive grid control parameterization theory is established to obtain the optimized parameterization grid for control variables so as to achieve high-precision solutions for the trajectory optimization problems. Finally, the random variables are introduced to construct the distribution function, and the high-precision solutions of trajectory optimization problems under random disturbances are obtained by combining the generalized polynomial theory with adaptive grid control parameterization. Through the studies of this project, a new theoretical calculation method for hypersonic flight vehicle high-accuracy trajectory optimization is expected to be established and to provide the important theoretical basis and technical support for the research of hypersonic flight vehicles.
高超声速飞行器高精度轨迹优化对于进一步提升飞行器设计品质,提高导航、制导与控制精度具有十分重要的理论意义及实际应用价值。由于高超声速飞行器存在强非线性、复杂约束条件和随机干扰等因素,传统方法在其高精度轨迹优化上面临模型转化和高精度求解等困难。为满足高精度轨迹优化需求,本项目提出基于自适应网格控制参数化的高超声速飞行器高精度轨迹优化研究。首先,针对复杂多约束条件,拟开展高精度约束转化建模研究,以降低轨迹优化问题模型的复杂度,提高约束满足精度;其次,拟建立自适应网格控制参数化理论,通过对控制变量参数化网格进行优化,实现轨迹优化问题的高精度求解;最后,拟引入随机变量构建随机分布函数,采用广义正交多项式理论,结合自适应网格控制参数化,实现随机干扰下轨迹优化问题的高精度求解。通过本项目研究,拟建立高超声速飞行器高精度轨迹优化新的系统理论计算方法,为高超声速飞行器研究提供重要的理论基础和技术支撑。
高超声速飞行器轨迹优化对于进一步提升飞行器设计品质,提高导航、制导与控制精度具有十分重要的理论意义及实际应用价值。本项目以高超声速飞行器为研究对象,为了实现其在强非线性、复杂约束条件下的轨迹规划,为飞行器的飞行任务实施提供重要的理论基础,开展了基于自适应网格控制参数化的高超声速飞行器高精度轨迹优化研究。首先,针对复杂多约束条件,开展了基于三角函数转化的边界约束转化、光滑化不等式约束处理策略、终端约束处理谱方法策略研究,为轨迹优化问题的模型处理转化提供支撑,降低了轨迹优化问题模型的复杂度,提高约束满足精度,为进一步求解奠定了基础;其次,建立了自适应网格控制参数化理论,实现了轨迹优化问题自适应网格控制参数化高精度数值优化方法,得到了基于Polak-Ribière-Polyak共轭梯度的快速优化算法、自适应高斯网格配点CVP优化算法、基于自适应控制弧度网格重构的轨迹优化算法用于轨迹优化问题的高精度求解;最后,分析了干扰下的轨迹优化问题求解与跟踪控制算法,在通用航空器平台开展了算法仿真测试,并在无人机平台开展了模拟实际测试,验证了算法的有效性和潜在的应用价值。通过本项目研究,为高超声速飞行器高精度轨迹优化建立了一些新的系统理论计算方法,将为高超声速飞行器研究提供重要的理论基础和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
药食兼用真菌蛹虫草的液体发酵培养条件优化
现代优化理论与应用
高分五号卫星多角度偏振相机最优化估计反演:角度依赖与后验误差分析
考虑台风时空演变的配电网移动储能优化配置与运行策略
高超声速飞行器动态面自适应反演及复合优化控制
高超声速飞行器拟线性化建模与自适应控制
高超声速飞行器实时再入轨迹与姿态协调控制策略研究
高超声速飞行器面向控制建模与线性变参数控制