Stiffness-tunable soft actuator is able to change their stiffness and function to adapt to the complex environment under outside stimuli and is the frontier research field of soft robotics. Active temperature-sensitive materials can be used to control the stiffness by material and the use of lattice structures can tune the stiffness through geometrical parameters. Due to the continuum large deformation of soft actuators in 3D space, viscoelastic property of active materials and periodical geometry of lattice structure, the modeling of soft actuator is a challenge. In this project, the modeling and design of stiffness-tunable soft actuators based on lattice structure will be investigated. First, the large deformation of soft actuators in 3-dimensional space will be studied using minimum potential energy method, second-order nonlinear elastic theory and rod theory. Next, the viscoelastic constitutive relations and stiffness dependence of active materials will be investigated. Thirdly, we will develop the theoretical modeling of lattice structure taking into account of its geometrical large deformation. Finally, the theoretical modeling will be applied to optimize the design of stiffness-tunable soft actuator. The soft actuators will be 3D printed, tested and compared with theoretical modeling. Investigations in this project will pave the way to develop superior multifunctional soft robots using active materials and lattice structures.
变刚度软体驱动器能够在外界环境的刺激下,改变自身的刚度和功能来适应复杂的环境,处于软体机器人领域的前沿。利用智能温敏材料能够通过材料实现变刚度的功能,使用网格结构能够通过几何参数对刚度进一步的调控。然而由于软体驱动器在三维空间的连续大变形,智能温敏材料的粘弹性属性和网格的周期性几何结构,变刚度软体驱动器的设计变得困难,缺乏理论模型的指导。本项目拟通过最小能量法、二阶非线性弹性理论和杆理论建立软体驱动器在三维空间大变形的理论模型;开展智能温敏材料在外界场作用下刚度改变的粘弹性理论研究;开展网格结构的载荷-大变形关系随几何参数变化的理论分析;完成理论模型指导变刚度软体驱动器设计和利用3D打印技术制造柔性抓手样机的一体化设计和制造。本项目的研究成果将为一体化设计制造新型多功能软体驱动器提供重要的理论和技术支持。
变刚度软体驱动器能够在外界环境的刺激下,改变自身的刚度和功能来适应复杂的环境,处于软体机器人领域的前沿。利用智能温敏材料能够通过材料实现变刚度的功能,使用网格结构能够通过几何参数对刚度进一步的调控。然而由于软体驱动器在三维空间的连续大变形,智能温敏材料的粘弹性属性和网格的周期性几何结构,变刚度软体驱动器的设计变得困难,缺乏理论模型的指导。本项目采用了最小能量法、二阶非线性弹性理论和杆理论,建立了软体驱动器在三维空间大变形的理论模型;开展了智能温敏材料在外界场作用下刚度改变的粘弹性理论研究;开展了网格结构的载荷-大变形关系随几何参数变化的理论分析;完成了理论模型指导变刚度软体驱动器设计和利用3D打印技术制造柔性抓手样机的一体化设计和制造。本项目的研究成果将为一体化设计制造新型多功能软体驱动器提供重要的理论和技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
基于改进LinkNet的寒旱区遥感图像河流识别方法
非牛顿流体剪切稀化特性的分子动力学模拟
具有随机多跳时变时延的多航天器协同编队姿态一致性
组蛋白去乙酰化酶在变应性鼻炎鼻黏膜上皮中的表达研究
气动与堵塞机构耦合的变刚度软体驱动器动态建模与控制方法
基于柔性齿条机构的变刚度关节驱动器的设计与研究
模块化软体绳驱动机器人的设计及变刚度控制研究
基于多元智能材料的超轻质软体机械臂大变形致动及变刚度机理研究