According to the environmental pollution problems during the dehydrogenation process of aluminum melt,we hope to study a new dehydrogenation method and technology for productivity and environmental protection under elecochemical principle by using of proton conducting electrolyte,develop the green metallurgy and realize sustainable development. The dehydrogenation electrochemical mechanism is obtained by investigating the dehydrogenation effects of hydrogen pump and concentration cell on aluminum melt. At the same time the projest puts forward improving the measures of dynamic dehydrogenation process based on the AC impedance spectroscopy and the relationship among dehydrogenation current and applied voltage creation of vacuum, creation of vacuum. Two new ideas called "dehydrogenation unit" and "mixed conductor" methods are proposed which have the has the advantage of simple device, low cost and high efficiency. The relationship between the composition and preparation of materials and the certain properties such as conductivity and thermal shock resistance in order to find more suitable solid electrolyte for dehydrogenation. The hydrogen probe is designed by structural optimization in order to improve the measuring technique. The effects of electron conduction, polarization, surface modification and properties of the reference electrodes and proton conductors are analyzed on response characteristics.the hydrogen sensor will be fabricated with fast, accurate good stability and reproducibility performance. At last,It is expected that the electrochemical hydrogen detection technology will become a powerful tool to control the refining process and aluminum quality.
针对铝液脱氢净化过程中存在的环境污染问题,本项目旨在利用质子导体电解质材料,根据电化学基本原理,研究高效环保的铝液脱氢新方法和技术,以发展绿色冶金,实现可持续发展。具体内容包括:通过考察氢泵法与浓差电池法的铝液脱氢效果,揭示铝液电化学脱氢的作用机理;通过对整个电路的阻抗谱分析,包括脱氢电流与外电压、抽真空、气体携带等的联系,提出改善脱氢反应动力学过程的措施;提出设备简单、成本低廉、脱氢率高的"脱氢体"法和混合导体法的新设想;通过研究材料成分和制备工艺与质子或混合导体某单项性能(如电导率、抗热震性等)的关系,寻找更加适合的脱氢电解质。另外,为了改进铝熔体传感测氢技术,该项目优化设计了测氢探头结构,并通过分析电子电导、极化效应、表面修饰、参比电极及敏感元件本身性质对传感器响应特性的影响,来研试快速准确、稳定可靠的铝液测氢传感器,以期使电化学测氢技术成为铝冶金过程控制和质量控制的有力工具之一。
本项目根据电化学原理,利用自制的CaZr0.9In0.1O3-α质子导体电解质制作氢泵,实现了两种无污染的铝液脱氢新工艺(浓差电池法和电解池法),并利用组装的浓差电池型氢传感器对脱氢效果进行在线监测;对传感器的测氢机制、技术参数的具体设置等进行了探索;对本项目中采用的质子导体电解质的成型工艺参数进行了优化。取得的重要结果如下:.①质子导体氢泵在760℃铝液中依次在真空抽取、O2气携带及Ar气携带、外加电压1.5V条件下的脱氢速度分别12.30、10.50、2.44和0.35mL/(100g•Al•min)。表明浓差电池短路法是一种速度快、效果好且无污染的铝液脱氢方法,尤其是在辅助真空抽取条件下的脱氢效果最为明显;②电解池脱氢法也能实现脱氢过程,且外加电压越大,脱氢速度越快,但比真空抽取和气体携带法慢;③在脱氢过程中,铝液内部会形成氢的浓度梯度,通过不断搅拌铝液,增大氢原子的扩散速度,可进一步提高脱氢速度;④倒置式氢传感器经13min达到较稳定状态,其传感性能优于正置式探头;⑤传感器的Ar(1%H2)参比气体流量或压力对电势有迅速、明显影响,电势随流量或压力的增加而增大,反之则减小,这可用Nernst方程解释;⑥气体流量的增加延长电势达到平衡所需的时间,并使电极/电解质界面的电荷转移电阻Rt降低;⑦传感器的氢传输机制为:质子在质子导体电解质内部的迁移和其在电极/电解质界面上的转移两个过程,其中电荷转移过程为速控步骤;⑧YH0.55+ YH2是一种稳定、可靠的传感器用固体参比电极;⑨较合理的氢泵和氢传感器用质子导体管的热压铸成型参数为:蜡浆成分配比(87.8%粉体、11%石蜡、1%蜂蜡、0.2%油酸),蜡浆温度73℃,模具温度30℃,成型压力0.5MPa,压力持续时间15s,排蜡温度1000℃。.本项目的科学意义如下:(1)电化学铝液脱氢新方法和装置在实验室阶段取得了成功,有应用前景,可在一定程度和范围内替代目前工业上普遍采用的喷吹N2+Cl2混合气体法,以解决设备腐蚀、环境污染及危害人体健康问题;(2)氢传感器的气体流量或压力是重要的技术参数,所取得的实验数据为这种类型传感器的国产化研制提供了基础;(3)电荷速控步骤的发现为提高传感器的响应特性提供了科学依据;(4)发现的固体参比电极为实现了传感器的微型化设计及降低测试成本指明了发展方向。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
双吸离心泵压力脉动特性数值模拟及试验研究
基于Pickering 乳液的分子印迹技术
用质子导体氢泵对铝合金熔体深度脱氢的研究
面向铝熔体测氢的双层复合质子导体材料的基础研究
铝液中氢和氧化夹杂物相互作用的研究
新型镧基质子导体及其在氢分离中的应用