Electric tool can greatly improve work efficiency and relieve the problem of labor shortage in aging society, which may find huge market in near future. At present, most of the electric tool has been driven by seriesly excited universal/DC motors, which limits its wide application due to the drawbacks of short life, low torque density, low efficiency, etc. Thus, one novel asymmetric-stator-pole doubly salient permanent magnet machine (ASP-DSPMM) will be presented in this project. Its stator poles are distributed non-uniformly along the circumference (the angle between the adjacent poles is 30 or 45 degrees.) and the permanent magnets are placed in the yoke of adjacent stator poles. Firstly, based on the finite element analysis, this research will propose a series of new topologies and build relevant equivalent magnetic circuit models. The relationship and matching rules among different parameters, as well as the relevant electromagnetic design methods will also be investigated in details. Secondly, the field-circuit coupling analysis, taking the interaction of electric, magnetic, thermal and mechanical fields into consideration, will be used to build the system-level optimization model. Meanwhile, in order to improve the drive performance of novel ASP-DSPMM system, the multi-objective optimization algorithm will also be investigated based on the special requirements. Moreover, the nonlinear mathematical model for the new ASP-DSPMM will be studied in details by combination of machine, converter, controller, loading, etc. Finally, the torque ripple suppression and efficiency optimization control strategies for the new driving system will be studied by cooperation with model predictive control algorithm. Compared with the traditional drive machines, the new machine will demonstrate the merits of high torque density, efficiency, reliability and so on. The proposed ASP-DSPMM could be one good candidate in the applications, such as electric tools, etc. Besides, the relevant research would significantly improve the competitiveness of products and effectively promote the economic growth.
本项目拟提出新型定子极不等间距双凸极永磁电机(ASP-DSPMM),其定子极沿圆周呈不均匀分布(相邻极间夹角为30或45度),永磁体置于邻近定子极轭部。首先,基于有限元法,本项目将提出系列新型拓扑并建立其等效磁路模型,研究参数间的作用及匹配规律,掌握电磁分析设计方法。其次,采用场路耦合法,考虑"电-磁-热-机"交叉作用,建立系统级多目标优化模型,提出快速收敛算法,有效提高系统驱动性能。再次,考虑电机、变频器和控制器相互影响,建立新电机非线性模型,并结合模型预测算法,提出转矩脉动抑制和效率优化控制策略。相对传统结构,新电机具有转矩密度高、效率高、可靠性高、性价比高等优点,可广泛应用于电动工具等场合,能明显提升相关产品竞争力,有力促进我国经济快速发展。
电动工具驱动系统用双凸极永磁电机存在高性价比电机拓扑缺乏、电磁优化研究不充分、电机转矩脉动大以及系统效率低等问题。为此,本项目从双凸极电机磁场解析模型入手,开发出了定子不对称极单相双凸极永磁电机和定子不对称极混合励磁双凸极电机及相应的电磁优化技术,并对其高效控制策略进行了研究,有效提升了电机效率和输出转矩,转矩波动得到了有效抑制。主要研究如下:.1、深入研究双凸极电机气隙磁场解析模型的建立方法,结合经典绕组理论对其空载气隙磁密、磁链和反电势等进行了深入分析,完善了其基础理论体系。.2、设计了一款新型定子不对称极单相双凸极永磁电机,建立了主要尺寸与性能参数间的关系,同时深入研究了关键结构参数对电磁性能的影响。最后对电机的优化,使其具有更小的转矩波动、转矩死区和更高的启动转矩。.3、设计了一款定子不对称极混合励磁双凸极电机,深入研究了直流励磁对电机性能的影响,分析了关键参数对电机电磁性能的影响。最后,构建了电机的代理模型,提出了多目标分层优化方法。.4、分析了混合励磁双凸极电机的基本弱磁原理,提出了恒反电势弱磁控制和电压闭环弱磁控制算法。然后分析了目前混合励磁电机弱磁理论的缺陷,进一步明确了励磁电流在电机实际控制过程中发挥的作用,进而设计了一种比较实用的励磁电流分配方案。随后将最大转矩电流比和最大转矩电压比算法与上述励磁电流分配方案相结合,提出了该电机的全速域控制策略。.基于相关研究,本项目共发表20篇SCI期刊文章、8篇会议文章;获授权专利3项,受理专利1项。相关研究成果均为世界前沿技术,将为电动工具驱动系统提供有力的理论与实践支撑,创造可观的社会经济价值。.
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合
拥堵路网交通流均衡分配模型
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
新型定子直流励磁及混合励磁双凸极电机工作机理及性能研究
双凸极变速永磁电机及控制系统之理论研究
电动车用新型双凸极电机驱动系统及其智能控制
飞轮储能用全距绕组双凸极电动/发电机