Polymer field-effect materials and devices have become an important research area attracted much attention. However, the development of this area has been limited due to the lack of polymer semiconductor materials with high electron mobilities. The aim of this project applied is to solve such urgent scientific problems in this area, such as how to tackle the problems of the interface between source-drain electrods and semiconductor layer and how to minimize the energy barrier of electron injection, in order to obtain high-performance polymer field-effect transistors (PFET). We will design and synthesize novel D-A and A-A type conjuaged polymers with independent intellectual property rights, and develop novel acceptor units. To obtain polymer semiconductors with high electron mobility, several stratigies will be used, such as an appropriate selection of donor and accepter building blocks, modification of polymer backbone structures, introduction of strong electron accepter groups, and tuning of the energy level of the lowest unoccupied molecular orbitals and intra-/intermolecular interactions. We will systematically investigate the relationship between molecular structures and carrier transport properties of the polymer semiconductors to find some new phenomena and regular patterns for the design of molecules with high performances. In addition, we will modify the interfaces between source-drain electrodes to improve the electron transport properties of the PFET devices. The achievement of this project is advantagous to contribute to the research area of polymer field-effect materials and devices in our country, aiming at enhanced international scientific competetion ability and providing a technological storage for strategic demands. Therefore, this project is important both in science and potential application.
聚合物场效应材料和器件已成为倍受关注的前沿研究领域,然而高电子迁移率的聚合物半导体材料的缺乏制约了该领域发展。本项目针对该领域亟待解决的科学问题开展研究,即如何解决源漏电极/聚合物半导体层的界面问题和降低电子注入势垒以获得高性能聚合物场效应晶体管(PFET),拟设计、合成具有自主知识产权的D-A和A-A型共轭聚合物,开发新型受体单元,通过给体和受体单元的合理选择、主链结构的修饰和强吸电子基团的引入,调控聚合物分子最低空轨道能级和分子内/分子间的相互作用,得到高电子迁移率的半导体材料;系统研究聚合物分子结构与载流子传输性能的关系,希望发现新现象和新规律,指导分子设计;对源漏电极表面进行有效修饰,提高PFET器件的电子传输性能。该项目的开展将有利于提高我国聚合物场效应材料和PFET器件领域的研究水平和国际竞争力,为国家战略需求提供技术储备。因此,本项目具有非常重要的科学意义和潜在应用前景。
聚合物场效应材料和器件已成为倍受关注的前沿研究领域,然而高电子迁移率的聚合物半导体材料的缺乏制约了该领域发展。如何解决源漏电极/聚合物半导体层的界面问题和降低电子注入势垒以获得高性能聚合物场效应晶体管(PFET)已成为该领域亟待解决的关键科学问题。针对上述问题,本项目在材料设计合成、结构调控与修饰、器件制备与优化、聚集态结构与载流子传输性能关系等方面开展了系列研究工作。开发了新型氮杂异靛蓝受体单元和二芳基乙烯给体单元,设计、合成了系列高迁移率的D-A型共轭聚合物。通过在聚合物分子主链上引入杂原子和取代基,实现了对能级结构和薄膜的聚集态结构的调控。构筑了PFET器件并优化了制备工艺,对金属源漏电极的表面进行有效修饰,提高了载流子迁移率。系统研究了聚合物的分子结构和聚集态结构与载流子传输性能的关联,在器件性能方面得到了有价值的结果,并据此对聚合物的分子结构进行了优化。通过本项目的研究,得到了高性能聚合物半导体材料,其电子迁移率超过8 cm^2 V^−1 s^−1。发表论文13篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
面向云工作流安全的任务调度方法
当归补血汤促进异体移植的肌卫星细胞存活
三级硅基填料的构筑及其对牙科复合树脂性能的影响
近水平层状坝基岩体渗透结构及其工程意义
骨髓间充质干细胞源外泌体调控心肌微血管内皮细胞增殖的机制研究
新型高性能聚合物场效应晶体管材料的设计、合成及器件制备
高性能聚合物半导体材料及其场效应性能的调控
d,π-共轭配位聚合物的设计合成及催化共聚性能研究
新型大环共轭聚合物的分子设计、合成与性能研究