Significant progress has been made on organic light-emitting diodes (OLEDs) due to their potential application in full-color displays and solid-state lighting. Semiconducting conjugated polymers and small molecules have attracted growing attentions due to their great application potentials in light-emitting diodes. Compared to small molecule organic semiconductor based devices, the conjugated polymers based devices can be fabricated through a low cost solution process and thereby possess unique advantages in the production of low cost, large area, flexible optoelectronic devices. However,most conjugated polymers are synthesized by the transition-metal-catalyzed cross-coupling reactions. The remaining traces of metal catalysts have a detrimental effect on the resulting thin film device performance. In addition, the molecular weights as well as polydispersity of conjugated polymers that also play an important role on the performance of the resulting devices are hard to be defined during the polymerization process, which usually generate the batch to batch variation. To overcome these problems, we are going to replace the conjugated polymers with the spuramolecular light-emitting polymers (SLEPs) driven by C-H…π interactions between pillar[5]arenes and linear alkyl. We design and develop new SLEPs materials and study the relationships between their chemical structures, processibility morphology and optical properties. Through the integrated strategy combining new materials, device engineering, and process optimization, the devices based on the SLEPs with extremely high efficiencies and stabilities are anticipated.
有机发光二极管在平板显示和固体照明领域有着广阔的应用前景,发展十分迅速。半导性的共轭聚合物和有机小分子等有机材料因其在发光二极管中的巨大应用前景而引起了学术界和产业界的持续关注。相比于有机小分子材料,共轭聚合物通过溶液加工工艺来制备低成本、大面积、柔性光电器件。但共轭聚合物通过金属催化偶联反应合成制备,残留的金属催化剂对器件性能有巨大影响。此外,共轭聚合物的分子量和分散度同样影响器件性能,聚合过程中很难保证分子量及分散度照成批次间的变化。为了解决这些问题,本项目计划开展基于主客体识别的超分子光电聚合物的研究,采用柱[5]芳烃与直链烷基基团以C-H…π相互作用为驱动力自组装成超分子光电聚合物。发展一系列红、绿、蓝三基色以及白光超分子光电材料,研究化学结构对材料的加工性能、光电性能等方面的影响。通过器件制作及优化,实现高效、文献的超分子光电聚合物器件。
光电高分子由于其特殊的光电性能,在新型高分子电子器件中的应用潜力(例如高分子发光二极管,高分子太阳电池等),而得到了广泛的关注。和其它光电器件技术相比,高分子光电器件由于其材料的高分子特性,可通过溶液加工(旋涂,打印等)的方式制作器件,因此在制作低成本,大面积以及可弯曲的柔性照明,太阳能器件上具有巨大的优势。本项目主要集中在基于柱[5]芳烃与直链烷基基团主客体相互作用的超分子光电聚合物和基于双噻吩丙烯腈、氟代喹喔啉的聚合物太阳电池给体材料两个方面开展研究。项目执行三年中共发表标注SCI论文31篇,申请中国专利1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
农超对接模式中利益分配问题研究
结核性胸膜炎分子及生化免疫学诊断研究进展
原发性干燥综合征的靶向治疗药物研究进展
基于Pickering 乳液的分子印迹技术
基于柱芳烃的超分子聚合物水凝胶构筑与性能研究
柱型杯芳烃的合成及其超分子化学研究
基于柱芳烃的金属超分子聚合物材料的构筑及其应用研究
柱芳烃聚合物荧光探针的合成及其结构和性能研究