This project is an innovative investigation that involvs in the interfacial architecture, design of assembling blocks and photocatalytic activity of visible light responsed all-solid–state Z-scheme polymer photocatalytic systems for overall water spliting and cinverstion of CO2. The all-solid–state Z-scheme polymer photocatalytic systems can be constructed by using electronic trasfer (n-type) congugated polymer semconductor as PSI and hole transfer (p-type) polymer semconductor as PSII, as well as non-noble metal sulphide or quantum dots as co-catalyst, its activity for the overall water splitting will be evaluated under stimulated solar light or visible light irradiation. An controllable modulation for the energy level matching of all-solid–state Z-scheme polymer photocatalytic system and Z-scheme charge transfer on the Ohmic contact interface will be achieved thought optimizing the assembling conditions including molecular design for PSII and PSI, their ratio, solvents and electronic conductor. Meanwhile, base on the innovative investigation for the formation, separation and interfacial migration kinetics of excitons, and combining with theoretical and computational chemistry, we will clarify the intrinsic scientific issues on the design of all-solid–state Z-scheme polymer photocatalytic systems and structure-function relationship, which provids an new idear and experimental basis for archtectuor of Z-scheme polymer photocatalytic system. Moreover, this investigation will lay a solid foundation for the applications of novel polymer semconductors in scientific field of environmental remediation, photoluminescence devices and polymer solar cell.
本项目是基于可见光响应的全固态Z-型聚合物光催化材料体系的界面构筑、单元设计以及光催化全分解水的创新性研究。以电子传输型(n型)共轭聚合物半导体为PSI,以空穴传输型共轭聚合物半导体为PSII,非贵金属单层硫化物或量子点作为电子导体构建全固态Z-型聚合物光催化体系并在模拟太阳光和可见光辐照下研究其全分解水性能及CO2转化性能。通过对组装条件包括PSII和PSI单元的分子设计、比例、溶剂和电子导体的优化,实现可控调节其能带匹配和欧姆接触界面上的Z-型载流子传输;同时基于对全固态Z-型聚合物光催化体系的激子形成、分离和界面迁移动力学的创新性研究,结合理论化学计算阐明Z-型聚合物光催化体系材料设计科学本质和构效关系,为构建的全固态Z-型聚合物光催化体系提供思路及实验依据,同时还为进一步开发新型聚合物半导体在环境净化、光致发光器件和聚合物燃料电池等相关科学领域的应用打下基础。
设计并研制了一系列新型共轭聚合物光催化材料,并基于这些共轭聚合物构了一系列全固态Z-型聚合物光催化体系,在模拟太阳光辐照下研究了其光催化分解水产氢产氧和CO2转化性能。还研制了基于MOF前驱体原位硫化的非贵金属纳米硫化物或量子点作为电子导体或PSII单元和共轭聚合物,构建了具有强光催化氧化性能及光催化还原性能的高效光催化材料体系。通过对全固态Z-型聚合物光催化体系的界面构筑及载流子传输过程的创新性研究,实现了可控调节其光吸收特性,同时实现了高效载流子传输;利用理论化学计算阐明了Z-型聚合物光催化体系的界面电子转移机理和构效关系,为构建全固态Z-型聚合物光催化反应体系提供了思路及实验依据,同时还为进一步开发具有光响应活性的聚合物半导体光催化材料在环境净化和聚合物燃料电池等相关科学领域的新应用打下基础。.合同任务完成,4年发表SCI论文24篇(其中包括Nano Energy 一篇,Applied Catalysis B: Environmental五篇,J. Mater. Chem. A一篇,The Journal of Physical Chemistry C一篇,Chemical Engineering Journal三篇,Polymer一篇)。.培养研究生10名(博士生5名(已毕业3名, 2名在学),硕士生5名(已毕业3名,2名在学)。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
全固态Z型光催化体系中光生电荷Z型转移和传递机制的解析与调控
相连续过渡Z-型光催化材料的构筑及晶格匹配对VOCs降解性能影响研究
全固态电池界面传输动力学及退化机制研究
高效全固态Z型光催化体系的构建与机理研究