Cell 3D printing technique provides new theories and techniques for tissue engineering, artificial organs, regenerative medicine, drug discovery and so on. Monitoring and assessing cell 3D printing results of the interventions between structure, cell viability and flow field, enable improving cell 3D printing technique, and further understanding the structure-function mechanism that influence the success. The development of such monitoring techniques is vital for the controllable biofabrication of tissues and organs. In this proposal, we’ll investigate three-dimensional cell viability contrast enhanced imaging modalities, and develop the methods for quick measurement of vector flow velocity based on our previous research. With spectral-domain optical coherence tomography technique as a base, automatic quantitative visualization, phase-based contrast enhancement, Doppler vector flow velocity measurement methods will be combined to establish a non-destructive, longitudinal, high resolution three-dimensional multimode imaging system. Therefore, in situ label free quantitative visualization of structural-functional information will be realized, such as the internal structure, 3D cell viability, vector fluid flow and local shear stress within the cell 3D printed constructs. Finally, the detection and application of cell 3D printing will be studied. Our research will promote the continue innovation of in vivo monitoring and feedback control methods, and the sustainable development of detection techniques and instruments for tissue enignieering, and provide the key theories and techniques for reconstruction of tissues and organs based cell 3D printing.
细胞3D打印为组织工程、再生医学、药物筛选等领域拓展了新的理论和技术空间。实时监测与量化分析细胞3D打印组织的内部结构、细胞活性、立体流场,对反馈优化3D打印技术、揭示打印组织的结构功能耦合机制,实现组织器官的重建具有重要意义。本项目拟在前期细胞3D打印组织的功能构建-调控与成像技术研究基础上,发展三维细胞活性对比增强成像技术,研究立体流场矢量速度的快速获取方法,以谱域光学相干层析成像(OCT)技术为基础,联合自动定量可视化、相位对比增强、多普勒矢量速度测量方法,建立无损高分辨三维多模式实时成像平台,实现打印产品的内部结构、细胞活性分布、立体流场的矢量速度和局部剪切力等结构-功能信息的无标记定量可视化,开展细胞3D打印的检测与应用研究。课题将促进细胞3D打印在线监测和反馈调控关键技术的解决,带动组织工程检测技术与仪器的发展,为基于细胞3D打印重建人体组织器官积累关键的理论和技术。
深入揭示材料、细胞、结构、微环境等因素对细胞3D打印生物产出的影响规律,是细胞3D打印重建组织器官面临的关键科学问题。细胞3D打印结构、活性、流场的动态监测与评价为这一问题的解决提供了新的理论和技术。项目构建了谱域光学相干层析成像系统,开发了自动定量可视化、深度解析散射对比增强、通道标定与强度方差结合的多普勒矢量速度测量方法,建立了无损高分辨三维多模式实时成像平台,实现打印产品的内部结构、细胞活性分布、立体流场等结构-功能信息的无标记定量可视化,解决了细胞3D打印无损检测的一些共性问题,实现一款检测设备的产业化。创新性提出制造辅助的OCT(M-OCT)技术,解决了细胞3D打印在线监测无法实现成像体积和成像分辨率兼顾难题,为细胞3D打印过程监控和整体无损评价奠定基础,一款带监测的打印设备实现产业化。创新性的提出迭代反馈控制生物3D打印技术(IFBP),有效提高打印的几何保真度,细胞的活性、增殖、基因表达得到显著改善,成功应用于微肝模型的量产和产业化。开发了3D打印皮肤生长周期内结构参数的自动定量监测方法,成功促进3D打印皮肤模型的量产和产业化。研究带动组织工程检测技术与仪器的发展,为细胞3D打印应用于组织工程、人工器官、药物筛选提供新的理论和技术。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
气载放射性碘采样测量方法研究进展
视网膜母细胞瘤的治疗研究进展
双吸离心泵压力脉动特性数值模拟及试验研究
基于全模式全聚焦方法的裂纹超声成像定量检测
面向3D打印的自平衡结构计算设计方法
面向3D打印的大型构件结构优化与低碳设计方法
3D打印连续纤维增强热塑性复合材料结构冲击损伤的机理及定量监测研究
面向3D打印的物理建模与几何优化